xmm newton


Record-Breaking Galaxy Cluster Confirms Dark Matter Universe

“But this new cluster is just 2.6 billion years old, and seems to be undergoing the very transition where a collection of galaxies falls into a bound structure for the first time, from a protocluster to a true galaxy cluster. This marks the first time astronomers have ever detected such an event: of the exact moment that a protocluster transitions to a true cluster. The fact that so many total galaxies (seventeen!) were discovered localized together at the same redshift (z=2.506) was a big hint, but the final piece of evidence came from the X-rays, where the diffuse emission engulfing the entire set of objects shows, beyond a shadow of a doubt, that this really is a galaxy cluster!”

There was once a time early on in the Universe where there were no stars, no galaxies and no clusters of galaxies at all. While stars and galaxies form very early on, after only tens or hundreds of millions of years, it takes billions of years for the first clusters to form. Yet even if we were to look back into the Universe’s past up to ten billion years, the clusters we see are already well-evolved and quiet. We had never seen a set of galaxies fall in and actively form a cluster before. We’d never seen the protocluster/cluster transition before. And we’d never found one from when the Universe was between two and three billion years old: when our dark matter theory predicts the first great clusters ought to form. Until, that is, now.

Come see how the Chandra X-ray observatory just found a record-breaking cluster that confirms our greatest picture of the Universe’s history!

(NASA)  Supernova Remnant Puppis A
Image Credit: X-ray: NASA/CXC/IAFE/ G. Dubner et al., ESA/XMM-Newton
Infrared: NASA/ESA/JPL-Caltech/GSFC/ R. Arendt et al.

Driven by the explosion of a massive star, supernova remnant Puppis A is blasting into the surrounding interstellar medium about 7,000 light-years away. At that distance, this remarkable false-color exploration of its complex expansion is about 180 light-years wide. It is based on the most complete X-ray data set so far from the Chandra and XMM/Newton observations, and infrared data from the Spitzer Space Telescope. In blue hues, the filamentary X-ray glow is from gas heated by the supernova’s shock wave, while the infrared emission shown in red and green is from warm dust. The bright pastel tones trace the regions where shocked gas and warmed dust mingle. Light from the initial supernova itself, triggered by the collapse of the massive star’s core, would have reached Earth about 3,700 years ago, though the Puppis A supernova remnant remains a strong source in the X-ray sky.

Hallan la primera estrella de neutrones de Andrómeda

Se encuentra a 2.537.000 años luz de la Tierra y junto con la Vía Láctea y la Galaxia del Triángulo, conforman las tres grandes galaxias espirales del Grupo Local. Ahora, tras décadas de búsqueda, un equipo de astrofísicos ha descubierto un objeto difícil de localizar en el universo: una estrella de neutrones. Este cadáver (o remanente) estelar ha sido localizado gracias al telescopio espacial XMM-Newton de la ESA.

La galaxia de Andrómeda es muy popular entre los astrónomos ya que es el objeto visible a simple vista más lejano de la Tierra y el más parecido a la Vía Láctea, lo que la convierten en un interesante laboratorio natural para los científicos. Durante décadas los telescopios han examinado al detalle todo el espectro electromagnético pero, hasta ahora, nunca había podido localizarse una estrella de neutrones.

Las estrellas de neutrones giran tan rápidamente que pueden incluso barrer pulsos regulares de radiación hacia la Tierra, como si de un faro cósmico se tratara, que puede “encenderse” y “apagarse” a medida que gira. Si “canibalizan” a alguna estrella vecina, la estrella de neutrones gira aún más rápido.

Los datos del telescopio de rayos X permitieron localizar la señal de una fuente inusual de una estrella de neutrones con un giro extremadamente rápido. Según los expertos, parece estar alimentándose de una estrella vecina que orbita cada 1,3 días, lo que le hace girar cada 1,2 segundos. Sin duda es inusual y exótica.

“Estábamos esperando detectar señales periódicas entre los objetos más brillantes de rayos X en Andrómeda, pero púlsares de rayos X brillantes tan persistentes como este siguen siendo un tanto peculiares. Buscamos a través de los datos de archivo de Andrómeda que abarca 2000-13, pero no fue hasta 2015 que finalmente fuimos capaces de identificar este objeto en la espiral exterior de la galaxia en sólo dos de las 35 mediciones”, explica Gian Luca Israel, coautor del estudio.

“Podría ser lo que llamamos un púlsar peculiar de rayos X de baja masa, pero necesitamos adquirir más observaciones del púlsar y su compañera para ayudar a determinar cuál es el escenario más probable”, comenta Paolo Esposito, coautor del trabajo.

El hallazgo ha sido publicado en la revista Monthly Notices of the Royal Astronomical Society.

This artist’s conception shows how supermassive black holes at the cores of galaxies blast radiation and ultra-fast winds outward. New data from NASA’s Nuclear Spectroscopic Telescope Array (NuSTAR) and the European Space Agency’s (ESA’s) XMM-Newton telescopes show that these winds, containing gases of highly ionized atoms, blow in a nearly spherical fashion, emanating in every direction, as shown in the artwork. 

With the shape and extent of the winds known, the researchers were able to determine the winds’ strength. The high-speed winds are powerful enough to shut down star formation throughout a galaxy.

The artwork is based on an image of the Pinwheel galaxy (Messier 101) taken by the Hubble Space Telescope.

Light shines on new views: The year of 2015 has been declared the International Year of Light (IYL) by the United Nations. Organizations, institutions, and individuals involved in the science and applications of light will be joining together for this yearlong celebration to help spread the word about the wonders of light. In many ways, astronomy uses the science of light. And to celebrate, Nasa’s Chandra X-ray Observatory released new images. Here’s one of them: When X-rays, shown in blue, from Chandra and XMM-Newton are joined in this image with radio data from the Australia Telescope Compact Array (pink) and visible light data from the Digitized Sky Survey (DSS, yellow), a new view of the region emerges. This object, known as MSH 11-62, contains an inner nebula of charged particles that could be an outflow from the dense spinning core left behind when a massive star exploded.

Credit: X-ray: NASA/CXC/SAO/P.Slane et al; Optical: DSS; Radio: CSIRO/ATNF/ATCA

A Precocious Black Hole

In July 2015, researchers announced the discovery of a black hole that grew much more quickly than its host galaxy. The discovery calls into question previous assumptions on development of galaxies. The black hole was discovered using the Hubble Space Telescope, and detected in the Sloan Digital Sky Survey, by ESA’s XMM-Newton and NASA’s Chandra.