xmm newton

Crab Nebula in technicolor! This new composite view combines data from five different telescopes, showing the celestial object in multiple kinds of light.

The video starts with a composite image of the Crab Nebula, a supernova remnant that was assembled by combining data from five telescopes spanning nearly the entire breadth of the electromagnetic spectrum: the Very Large Array, the Spitzer Space Telescope, the Hubble Space Telescope, the XMM-Newton Observatory, and the Chandra X-ray Observatory. 

It then dissolves to the red-colored radio-light view that shows how a neutron star’s fierce “wind” of charged particles from the central neutron star energized the nebula, causing it to emit the radio waves. 

The yellow-colored infrared image includes the glow of dust particles absorbing ultraviolet and visible light. 

The green-colored Hubble visible-light image offers a very sharp view of hot filamentary structures that permeate this nebula. 

The blue-colored ultraviolet image and the purple-colored X-ray image shows the effect of an energetic cloud of electrons driven by a rapidly rotating neutron star at the center of the nebula.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

Observatories Combine to Crack Open the Crab Nebula

Astronomers have produced a highly detailed image of the Crab Nebula, by combining data from telescopes spanning nearly the entire breadth of the electromagnetic spectrum, from radio waves seen by the Karl G. Jansky Very Large Array (VLA) to the powerful X-ray glow as seen by the orbiting Chandra X-ray Observatory. And, in between that range of wavelengths, the Hubble Space Telescope’s crisp visible-light view, and the infrared perspective of the Spitzer Space Telescope.

The Crab Nebula, the result of a bright supernova explosion seen by Chinese and other astronomers in the year 1054, is 6,500 light-years from Earth. At its center is a super-dense neutron star, rotating once every 33 milliseconds, shooting out rotating lighthouse-like beams of radio waves and light – a pulsar (the bright dot at image center). The nebula’s intricate shape is caused by a complex interplay of the pulsar, a fast-moving wind of particles coming from the pulsar, and material originally ejected by the supernova explosion and by the star itself before the explosion.

This image combines data from five different telescopes: the VLA (radio) in red; Spitzer Space Telescope (infrared) in yellow; Hubble Space Telescope (visible) in green; XMM-Newton (ultraviolet) in blue; and Chandra X-ray Observatory (X-ray) in purple.

The new VLA, Hubble, and Chandra observations all were made at nearly the same time in November of 2012. A team of scientists led by Gloria Dubner of the Institute of Astronomy and Physics (IAFE), the National Council of Scientific Research (CONICET), and the University of Buenos Aires in Argentina then made a thorough analysis of the newly revealed details in a quest to gain new insights into the complex physics of the object. They are reporting their findings in the Astrophysical Journal.

“Comparing these new images, made at different wavelengths, is providing us with a wealth of new detail about the Crab Nebula. Though the Crab has been studied extensively for years, we still have much to learn about it,” Dubner said.

The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington.

NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra’s science and flight operations.

NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the Spitzer Space Telescope for NASA’s Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at Caltech in Pasadena. Spacecraft operations are based at Lockheed Martin Space Systems Company, Littleton, Colorado. Data are archived at the Infrared Science Archive housed at the Infrared Processing and Analysis Center at Caltech. Caltech manages JPL for NASA.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

IMAGE….In the summer of the year 1054 AD, Chinese astronomers saw a new “guest star,” that appeared six times brighter than Venus. So bright in fact, it could be seen during the daytime for several months.

This “guest star” was forgotten about until 700 years later with the advent of telescopes. Astronomers saw a tentacle-like nebula in the place of the vanished star and called it the Crab Nebula. Today we know it as the expanding gaseous remnant from a star that self-detonated as a supernova, briefly shining as brightly as 400 million suns. The explosion took place 6,500 light-years away. If the blast had instead happened 50 light-years away it would have irradiated Earth, wiping out most life forms.

In the late 1960s astronomers discovered the crushed heart of the doomed star, an ultra-dense neutron star that is a dynamo of intense magnetic field and radiation energizing the nebula. Astronomers therefore need to study the Crab Nebula across a broad range of electromagnetic radiation, from X-rays to radio waves.

This image combines data from five different telescopes: the VLA (radio) in red; Spitzer Space Telescope (infrared) in yellow; Hubble Space Telescope (visible) in green; XMM-Newton (ultraviolet) in blue; and Chandra X-ray Observatory (X-ray) in purple.

The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C.

NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA’s Science Mission Directorate in Washington, D.C. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra’s science and flight operations.

NASA’s Jet Propulsion Laboratory, Pasadena, California, manages the Spitzer Space Telescope for NASA’s Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at Caltech in Pasadena, California. Spacecraft operations are based at Lockheed Martin Space Systems Company, Littleton, Colorado. Data are archived at the Infrared Science Archive housed at the Infrared Processing and Analysis Center at Caltech. Caltech manages JPL for NASA.


New Insights Into the Crab Nebula

Five observatories teamed up to spy on the Crab Nebula and the results are incredible. The VLA (radio) views are shown in red; Spitzer Space Telescope (infrared) in yellow; Hubble Space Telescope (visible) in green; XMM-Newton (ultraviolet) in blue; and Chandra X-ray Observatory (X-ray) in purple.

Keep reading


Lomonosov Moscow State University scientists have published in the Astrophysical Journal the results of a study of the unique ultraslow pulsar XB091D. This neutron star is believed to have captured a companion only a million years ago and, since then, has been slowly restoring its rapid rotation. The young pulsar is located in one of the oldest globular star clusters in the Andromeda galaxy, where the cluster may once have been a dwarf galaxy.

Massive stars die young, exploding as bright supernovae. In this process, their outer layers of material are thrown off, and the core shrinks, usually becoming a compact and super-dense neutron star. Strongly magnetized, they rotate rapidly, making hundreds of revolutions per second, but they lose their rotational energy and slow down, emitting narrow beams of particles. They radiate a focused radio emission that periodically passes the Earth, creating the effect of a regularly pulsating source, often with a millisecond period.

In order to “return youth” and again accelerate its rotation, the pulsar can encounter an ordinary star. After teaming up to form a pair or a binary system, the neutron star begins to pull matter from the star, forming a hot accretion disk around itself. Closer to the neutron star, the gaseous disk is torn apart by the magnetic field of the neutron star, and the matter streams onto it, forming a “hot spot” – the temperature here reaches millions of degrees, and the spot radiates in X-rays. A rotating neutron star can then be seen as an X-ray pulsar as a beacon, while the matter that continues to fall on it gives an additional impulse, accelerating the rotation.

For some hundred thousand years – a mere blink in the history of the universe – the old pulsar, which has already slowed to one revolution every few seconds, can once again spin thousands of times faster. Such a rare moment was observed by a team of astrophysicists from the Lomonosov Moscow State University, jointly with colleagues from Italy and France. The X-ray pulsar known as XB091D, was discovered at the earliest stages of its “rejuvenation” and turns out to be the slowest rotating of all globular-cluster pulsars known to date. The neutron star completes one revolution in 1.2 seconds – more than ten times slower than the previous record holder. According to scientists, the acceleration of the pulsar began less than one million years ago.

The discovery was made using observations collected by the XMM-Newton space observatory between 2000 and 2013 and were combined by astronomers of the Lomonosov Moscow State University into an open online database. Access to information on approximately 50 billion X-ray photons has already allowed scientists from different countries to discover a number of previously unnoticed interesting objects. Among them was the pulsar XB091D, which was also noticed by another group of Italian astronomers who published their results several months ago. XB091D is only the second pulsar found outside of our galaxy and its nearest satellites, although two more such pulsars were subsequently detected using the same online catalog.

The results of the first complete analysis of the X-ray source XB091D are presented in an article published by Ivan Zolotukhin, a researcher at the Lomonosov Moscow State University, and his co-authors in The Astrophysical Journal.

“The detectors on XMM-Newton detect only one photon from this pulsar every five seconds. Therefore, the search for pulsars among the extensive XMM-Newton data can be compared to the search for a needle in a haystack, “ says Ivan Zolotukhin. – In fact, for this discovery we had to create completely new mathematical tools that allowed us to search and extract the periodic signal. Theoretically, there are many applications for this method, including those outside astronomy. “

Based on a total of 38 XMM-Newton observations, astronomers managed to characterize the XB091D system. The X-ray pulsar is about 1 million years old, the companion of the neutron star is an old star of moderate size (about four fifths the mass of the Sun). The binary system itself has a rotation period of 30.5 hours, and the neutron star spins once on its axis every 1.2 seconds. In about 50 thousand years, it will accelerate sufficiently to turn into a conventional millisecond pulsar.

However, it was not only orbital parameters that astronomers were able to observe, they were also able to determine the environment around XB091D. Ivan Zolotukhin and his colleagues showed that XB091D is located in the neighboring Andromeda galaxy, 2.5 million light-years away, amongst the stars of the extremely dense globular cluster B091D, where in a volume of only 90 light-years across, there are more millions of old faint stars. The cluster itself is estimated to be as much as 12 billion years old, so no recent supernovae resulting in the birth of a pulsar would have occurred.

“In our galaxy, no such slow X-ray pulsars are observed in hundred and fifty known globular clusters, because their cores are not big and dense enough to form close binary stars at sufficiently high rate” explains Ivan Zolotukhin. – This indicates that the B091D cluster core, with an extremely dense composition of stars in the XB091D is much larger than that of the usual cluster. So, we are dealing with a large and rather rare object – with a dense remnant of a small galaxy that the Andromeda galaxy once devoured. The density of the stars here, in a region that is about 2.5 light-years across, is about ten million times higher than in the vicinity of the Sun.”

According to scientists, it is the vast region of super-high density stars in the B091D cluster that allowed a neutron star to capture a companion about a million years ago and begin the process of acceleration and “rejuvenation.”

The Milky Way’s close neighbor, Andromeda, features a dominant source of high-energy X-ray emission, but its identity was mysterious until now. As reported in a new study, NASA’s NuSTAR (Nuclear Spectroscopic Telescope Array) mission has pinpointed an object responsible for this high-energy radiation.

The object, called Swift J0042.6+4112, is a possible pulsar, the dense remnant of a dead star that is highly magnetized and spinning, researchers say. This interpretation is based on its emission in high-energy X-rays, which NuSTAR is uniquely capable of measuring. The object’s spectrum is very similar to known pulsars in the Milky Way.

It is likely in a binary system, in which material from a stellar companion gets pulled onto the pulsar, spewing high-energy radiation as the material heats up.

“We didn’t know what it was until we looked at it with NuSTAR,” said Mihoko Yukita, lead author of a study about the object, based at Johns Hopkins University in Baltimore. The study is published in The Astrophysical Journal.

This candidate pulsar is shown as a blue dot in a NuSTAR X-ray image of Andromeda (also called M31), where the color blue is chosen to represent the highest-energy X-rays. It appears brighter in high-energy X-rays than anything else in the galaxy.

The study brings together many different observations of the object from various spacecraft. In 2013, NASA’s Swift satellite reported it as a high-energy source, but its classification was unknown, as there are many objects emitting low energy X-rays in the region. The lower-energy X-ray emission from the object turns out to be a source first identified in the 1970s by NASA’s Einstein Observatory. Other spacecraft, such as NASA’s Chandra X-ray Observatory and ESA’s XMM-Newton had also detected it. However, it wasn’t until the new study by NuSTAR, aided by supporting Swift satellite data, that researchers realized it was the same object as this likely pulsar that dominates the high energy X-ray light of Andromeda.

Traditionally, astronomers have thought that actively feeding black holes, which are more massive than pulsars, usually dominate the high-energy X-ray light in galaxies. As gas spirals closer and closer to the black hole in a structure called an accretion disk, this material gets heated to extremely high temperatures and gives off high-energy radiation. This pulsar, which has a lower mass than any of Andromeda’s black holes, is brighter at high energies than the galaxy’s entire black hole population.

Even the supermassive black hole in the center of Andromeda does not have significant high-energy X-ray emission associated with it. It is unexpected that a single pulsar would instead be dominating the galaxy in high-energy X-ray light.

“NuSTAR has made us realize the general importance of pulsar systems as X-ray-emitting components of galaxies, and the possibility that the high energy X-ray light of Andromeda is dominated by a single pulsar system only adds to this emerging picture,” said Ann Hornschemeier, co-author of the study and based at NASA’s Goddard Space Flight Center, Greenbelt, Maryland.

Andromeda is a spiral galaxy slightly larger than the Milky Way. It resides 2.5 million light-years from our own galaxy, which is considered very close, given the broader scale of the universe. Stargazers can see Andromeda without a telescope on dark, clear nights.

“Since we can’t get outside our galaxy and study it in an unbiased way, Andromeda is the closest thing we have to looking in a mirror,” Hornschemeier said.

NuSTAR is a Small Explorer mission led by Caltech and managed by JPL for NASA’s Science Mission Directorate in Washington. NuSTAR was developed in partnership with the Danish Technical University and the Italian Space Agency (ASI). The spacecraft was built by Orbital Sciences Corp., Dulles, Virginia. NuSTAR’s mission operations center is at UC Berkeley, and the official data archive is at NASA’s High Energy Astrophysics Science Archive Research Center. ASI provides the mission’s ground station and a mirror archive. JPL is managed by Caltech for NASA.


Hallan la primera estrella de neutrones de Andrómeda

Se encuentra a 2.537.000 años luz de la Tierra y junto con la Vía Láctea y la Galaxia del Triángulo, conforman las tres grandes galaxias espirales del Grupo Local. Ahora, tras décadas de búsqueda, un equipo de astrofísicos ha descubierto un objeto difícil de localizar en el universo: una estrella de neutrones. Este cadáver (o remanente) estelar ha sido localizado gracias al telescopio espacial XMM-Newton de la ESA.

La galaxia de Andrómeda es muy popular entre los astrónomos ya que es el objeto visible a simple vista más lejano de la Tierra y el más parecido a la Vía Láctea, lo que la convierten en un interesante laboratorio natural para los científicos. Durante décadas los telescopios han examinado al detalle todo el espectro electromagnético pero, hasta ahora, nunca había podido localizarse una estrella de neutrones.

Las estrellas de neutrones giran tan rápidamente que pueden incluso barrer pulsos regulares de radiación hacia la Tierra, como si de un faro cósmico se tratara, que puede “encenderse” y “apagarse” a medida que gira. Si “canibalizan” a alguna estrella vecina, la estrella de neutrones gira aún más rápido.

Los datos del telescopio de rayos X permitieron localizar la señal de una fuente inusual de una estrella de neutrones con un giro extremadamente rápido. Según los expertos, parece estar alimentándose de una estrella vecina que orbita cada 1,3 días, lo que le hace girar cada 1,2 segundos. Sin duda es inusual y exótica.

“Estábamos esperando detectar señales periódicas entre los objetos más brillantes de rayos X en Andrómeda, pero púlsares de rayos X brillantes tan persistentes como este siguen siendo un tanto peculiares. Buscamos a través de los datos de archivo de Andrómeda que abarca 2000-13, pero no fue hasta 2015 que finalmente fuimos capaces de identificar este objeto en la espiral exterior de la galaxia en sólo dos de las 35 mediciones”, explica Gian Luca Israel, coautor del estudio.

“Podría ser lo que llamamos un púlsar peculiar de rayos X de baja masa, pero necesitamos adquirir más observaciones del púlsar y su compañera para ayudar a determinar cuál es el escenario más probable”, comenta Paolo Esposito, coautor del trabajo.

El hallazgo ha sido publicado en la revista Monthly Notices of the Royal Astronomical Society.

Do Black Holes Explode When They Die?

A new theory suggests that black holes might die by transforming into a ‘white hole,’ which theoretically behave in the exact opposite manner as a black hole - rather than sucking all matter in, a 'white hole’ spews it out.

The theory, as first reported by Nature.com, is based on the speculative quantum theory of gravity. Scientists believe it may help determine the great debate over black holes about whether they destroy the things they consume.

According to the theory, a 'white hole’ would explosively expel all the material consumed by a black hole.

Keep reading

This artist’s conception shows how supermassive black holes at the cores of galaxies blast radiation and ultra-fast winds outward. New data from NASA’s Nuclear Spectroscopic Telescope Array (NuSTAR) and the European Space Agency’s (ESA’s) XMM-Newton telescopes show that these winds, containing gases of highly ionized atoms, blow in a nearly spherical fashion, emanating in every direction, as shown in the artwork. 

With the shape and extent of the winds known, the researchers were able to determine the winds’ strength. The high-speed winds are powerful enough to shut down star formation throughout a galaxy.

The artwork is based on an image of the Pinwheel galaxy (Messier 101) taken by the Hubble Space Telescope.


Record-Breaking Galaxy Cluster Confirms Dark Matter Universe

“But this new cluster is just 2.6 billion years old, and seems to be undergoing the very transition where a collection of galaxies falls into a bound structure for the first time, from a protocluster to a true galaxy cluster. This marks the first time astronomers have ever detected such an event: of the exact moment that a protocluster transitions to a true cluster. The fact that so many total galaxies (seventeen!) were discovered localized together at the same redshift (z=2.506) was a big hint, but the final piece of evidence came from the X-rays, where the diffuse emission engulfing the entire set of objects shows, beyond a shadow of a doubt, that this really is a galaxy cluster!”

There was once a time early on in the Universe where there were no stars, no galaxies and no clusters of galaxies at all. While stars and galaxies form very early on, after only tens or hundreds of millions of years, it takes billions of years for the first clusters to form. Yet even if we were to look back into the Universe’s past up to ten billion years, the clusters we see are already well-evolved and quiet. We had never seen a set of galaxies fall in and actively form a cluster before. We’d never seen the protocluster/cluster transition before. And we’d never found one from when the Universe was between two and three billion years old: when our dark matter theory predicts the first great clusters ought to form. Until, that is, now.

Come see how the Chandra X-ray observatory just found a record-breaking cluster that confirms our greatest picture of the Universe’s history!

Light shines on new views: The year of 2015 has been declared the International Year of Light (IYL) by the United Nations. Organizations, institutions, and individuals involved in the science and applications of light will be joining together for this yearlong celebration to help spread the word about the wonders of light. In many ways, astronomy uses the science of light. And to celebrate, Nasa’s Chandra X-ray Observatory released new images. Here’s one of them: When X-rays, shown in blue, from Chandra and XMM-Newton are joined in this image with radio data from the Australia Telescope Compact Array (pink) and visible light data from the Digitized Sky Survey (DSS, yellow), a new view of the region emerges. This object, known as MSH 11-62, contains an inner nebula of charged particles that could be an outflow from the dense spinning core left behind when a massive star exploded.

Credit: X-ray: NASA/CXC/SAO/P.Slane et al; Optical: DSS; Radio: CSIRO/ATNF/ATCA

(NASA)  Supernova Remnant Puppis A
Image Credit: X-ray: NASA/CXC/IAFE/ G. Dubner et al., ESA/XMM-Newton
Infrared: NASA/ESA/JPL-Caltech/GSFC/ R. Arendt et al.

Driven by the explosion of a massive star, supernova remnant Puppis A is blasting into the surrounding interstellar medium about 7,000 light-years away. At that distance, this remarkable false-color exploration of its complex expansion is about 180 light-years wide. It is based on the most complete X-ray data set so far from the Chandra and XMM/Newton observations, and infrared data from the Spitzer Space Telescope. In blue hues, the filamentary X-ray glow is from gas heated by the supernova’s shock wave, while the infrared emission shown in red and green is from warm dust. The bright pastel tones trace the regions where shocked gas and warmed dust mingle. Light from the initial supernova itself, triggered by the collapse of the massive star’s core, would have reached Earth about 3,700 years ago, though the Puppis A supernova remnant remains a strong source in the X-ray sky.

NGC 2276: NASA’s Chandra Finds Intriguing Member of Black Hole Family Tree

  • An intriguing object has been found in one of the spiral arms of the galaxy NGC 2276.
  • This source, called NGC 2276-3c, appears to be an intermediate-mass black hole.
  • According to X-ray and radio data, NGC 2276-3c contains about 50,000 times the mass of the Sun.

A newly discovered object in the galaxy NGC 2276 may prove to be an important black hole that helps fill in the evolutionary story of these exotic objects, as described in our latest press release. The main image in this graphic contains a composite image of NGC 2766 that includes X-rays from NASA’s Chandra X-ray Observatory (pink) combined with optical data from the Hubble Space Telescope and the Digitized Sky Survey (red, green and blue). The inset is a zoom into the interesting source that lies in one of the galaxy’s spiral arms. This object, called NGC 2276-3c, is seen in radio waves (red) in observations from the European Very Long Baseline Interferometry Network, or EVN.

Astronomers have combined the X-ray and radio data to determine that NGC 2766-3c is likely an intermediate-mass black hole (IMBH). As the name suggests, IMBHs are black holes that are larger than stellar-mass black holes that contain about five to thirty times the mass of the Sun, but smaller than supermassive black holes that are millions or even billions of solar masses. The researchers estimated the mass of NGC 2766-3c using a well-known relationship between how bright the source is in radio and X-rays, and the mass of the black hole. The X-ray and radio brightness were based on observations with Chandra and the EVN. They found that NGC 2276-3c contains about 50,000 times the mass of the Sun.

IMBHs are interesting to astronomers because they may be the seeds that eventually evolve into supermassive black holes. They also may be strongly influencing their environment. This latest result on NGC 2276-3c suggests that it may be suppressing the formation of new stars around it. The EVN radio data reveal an inner jet that extends about 6 light years from NGC 2276-3c. Additional observations by the NSF’s Karl Jansky Very Large Array (VLA) show large-scale radio emission extending out to over 2,000 light years away from the source.

A region along the jet extending to about 1,000 light years away from NGC 2766-3c is devoid of young stars. This might provide evidence that the jet has cleared out a cavity in the gas, preventing new stars from forming there. The VLA data also reveal a large population of stars at the edge of the radio emission from the jet. This enhanced star formation could take place either when the material swept out by the jet collides with dust and gas in between the stars in NGC 2276, or when triggered by the merger of NGC 2276 with a dwarf galaxy.

In a separate study, Chandra observations of this galaxy have also been used to examine its rich population of ultraluminous X-ray sources (ULXs). Sixteen X-ray sources are found in the deep Chandra dataset seen in this composite image, and eight of these are ULXs including NGC 2276-3c. Chandra observations show that one apparent ULX observed by ESA’s XMM-Newton is actually five separate ULXs, including NGC 2276-3c. This ULX study shows that about five to fifteen solar masses worth of stars are forming each year in NGC 2276. This high rate of star formation may have been triggered by a collision with a dwarf galaxy, supporting the merger idea for the IMBH’s origin.

The study on NGC 2276-3c was conducted by Mar Mezcua (previously in the Instituto de Astrofisica de Canarias and now at the Harvard-Smithsonian Center for Astrophysics), Tim Roberts (University of Durham, UK), Andrei Lobanov ( Max Planck Institute for Radio Astronomy, Germany), and Andrew Sutton (University of Durham) and will appear in the Monthly Notices of the Royal Astronomical Society (MNRAS). A separate paper on the ULX population in NGC 2276 will also appear in MNRAS and the authors on that study are Anna Wolter (National Institute for Astrophysics (INAF) in Milan, Italy), Paolo Esposito (INAF), Michela Mapelli (INAF, Padova), Fabio Pizzolato (University of Milan, Italy), and Emanuele Ripamonti (University of Padova, Italy).

NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra’s science and flight operations.

Image Credit: X-ray: NASA/CXC/SAO/M.Mezcua et al & NASA/CXC/INAF/A.Wolter et al; Optical: NASA/STScI and DSS; Inset: Radio: EVN/VLBI

A Supernova’s Beautiful Shockwave

The destructive results of a mighty supernova explosion reveal themselves in a delicate blend of infrared and X-ray light, as seen in this image from NASA’s Spitzer Space Telescope and Chandra X-Ray Observ…atory, and the European Space Agency’s XMM-Newton.

The bubbly cloud is an irregular shock wave, generated by a supernova that would have been witnessed on Earth 3,700 years ago. The remnant itself, called Puppis A, is around 7,000 light-years away, and the shock wave is about 10 light-years across.

The pastel hues in this image reveal that the infrared and X-ray structures trace each other closely. Warm dust particles are responsible for most of the infrared light wavelengths, assigned red and green colors in this view. Material heated by the supernova’s shock wave emits X-rays, which are colored blue. Regions where the infrared and X-ray emissions blend together take on brighter, more pastel tones.

The shock wave appears to light up as it slams into surrounding clouds of dust and gas that fill the interstellar space in this region.

From the infrared glow, astronomers have found a total quantity of dust in the region equal to about a quarter of the mass of our sun. Data collected from Spitzer’s infrared spectrograph reveal how the shock wave is breaking apart the fragile dust grains that fill the surrounding space.

Supernova explosions forge the heavy elements that can provide the raw material from which future generations of stars and planets will form. Studying how supernova remnants expand into the galaxy and interact with other material provides critical clues into our own origins.

Infrared data from Spitzer’s multiband imaging photometer (MIPS) at wavelengths of 24 and 70 microns are rendered in green and red. X-ray data from XMM-Newton spanning an energy range of 0.3 to 8 keV (kiloelectron volts) are shown in blue.

Caption: NASA

A Precocious Black Hole

In July 2015, researchers announced the discovery of a black hole that grew much more quickly than its host galaxy. The discovery calls into question previous assumptions on development of galaxies. The black hole was discovered using the Hubble Space Telescope, and detected in the Sloan Digital Sky Survey, by ESA’s XMM-Newton and NASA’s Chandra.

Majestic Star-Forming Region

Massive stars are born in tumultuous clouds of gas and dust. They lead a brief but intense life, blowing powerful winds of particles and radiation that strike their surroundings, before their explosive demise as supernovas.

The interplay between massive stars and their environment is revealed in this image of the star-forming region ON2. It combines X-ray coverage from ESA’s XMM-Newton X-ray observatory with an infrared view from NASA’s Spitzer Space Telescope. This stellar cradle is associated with the open cluster of stars named Berkeley 87, some 4000 light-years from Earth. The cluster is home to over 2000 stars, most of which are low-mass stars like our Sun or smaller, but some – a few dozen – are stellar monsters weighing 10–80 times more.

Two glowing clouds of gas and dust – the raw material from which stars form – dominate the centre of the image and are shown in red. Scattered across the image are a multitude of protostars – seeds of future stellar generations; these are shown in green. The bright yellow star in the upper part of the image is BC Cygni, a massive star that has puffed up enormously and will eventually explode as a supernova. Shown in blue is XMM-Newton’s X-ray view of ON2: it reveals individual sources – young, massive stars as well as protostars – and more diffuse regions of X-rays. Two ‘bubbles’ of X-rays can be seen in the upper and lower clouds, respectively, pink against the red background. These two bubbles conceal the cumulative emissions from many protostars, but also light radiated by very energetic particles – a signature of shockwaves triggered by massive stars and their winds.

The image combines observations performed in the X-ray energy range of 0.25–12 keV (blue) and at infrared wavelengths of 3.6 microns (green) and 8 microns (red). It spans about 15 arcminutes on each side; north is up and east is to the left. This image was first published in the paper “Hard X-Ray Emission in the Star-Forming Region ON 2: Discovery with XMM-Newton” by Oskinova et al. in April 2010.