universalis

The Glass Bead Game / Musica universalis

“These rules, the sign language and grammar of the Game, constitute a kind of highly developed secret language drawing upon several sciences and arts, but especially mathematics and music (and/or musicology), and capable of expressing and establishing interrelationships between the content and conclusions of nearly all scholarly disciplines. The Glass Bead Game is thus a mode of playing with the total contents and values of our culture; it plays with them as, say, in the great age of the arts a painter might have played with the colors on his palette. All the insights, noble thoughts, and works of art that the human race has produced in its creative eras, all that subsequent periods of scholarly study have reduced to concepts and converted into intellectual property – on all this immense body of intellectual values the Glass Bead Game player plays like the organist on an organ. And this organ has attained an almost unimaginable perfection; its manuals and pedals range over the entire intellectual cosmos; its stops are almost beyond number. Theoretically this instrument is capable of reproducing in the Game the entire intellectual content of the universe.” 

-The Glass Bead Game: A General Introduction to its History for the Layman, The Glass Bead Game, Hermann Hesse

List of medieval European scientists
  • Anthemius of Tralles (ca. 474 – ca. 534): a professor of geometry and architecture, authored many influential works on mathematics and was one of the architects of the famed Hagia Sophia, the largest building in the world at its time. His works were among the most important source texts in the Arab world and Western Europe for centuries after.
  • John Philoponus (ca. 490–ca. 570): also known as John the Grammarian, a Christian Byzantine philosopher, launched a revolution in the understanding of physics by critiquing and correcting the earlier works of Aristotle. In the process he proposed important concepts such as a rudimentary notion of inertia and the invariant acceleration of falling objects. Although his works were repressed at various times in the Byzantine Empire, because of religious controversy, they would nevertheless become important to the understanding of physics throughout Europe and the Arab world.
  • Paul of Aegina (ca. 625–ca. 690): considered by some to be the greatest Christian Byzantine surgeon, developed many novel surgical techniques and authored the medical encyclopedia Medical Compendium in Seven Books. The book on surgery in particular was the definitive treatise in Europe and the Islamic world for hundreds of years.
  • The Venerable Bede (ca. 672–735): a Christian monk of the monasteries of Wearmouth and Jarrow who wrote a work On the Nature of Things, several books on the mathematical / astronomical subject of computus, the most influential entitled On the Reckoning of Time. He made original discoveries concerning the nature of the tides and his works on computus became required elements of the training of clergy, and thus greatly influenced early medieval knowledge of the natural world.
  • Rabanus Maurus (c. 780 – 856): a Christian monk and teacher, later archbishop of Mainz, who wrote a treatise on Computus and the encyclopedic work De universo. His teaching earned him the accolade of "Praeceptor Germaniae," or "the teacher of Germany."
  • Abbas Ibn Firnas (810 – 887): a polymath and inventor in Muslim Spain, made contributions in a variety of fields and is most known for his contributions to glass-making and aviation. He developed novel ways of manufacturing and using glass. He broke his back at an unsuccessful attempt at flying a primitive hang glider in 875.
  • Pope Sylvester II (c. 946–1003): a Christian scholar, teacher, mathematician, and later pope, reintroduced the abacus and armillary sphere to Western Europe after they had been lost for centuries following the Greco-Roman era. He was also responsible in part for the spread of the Hindu-Arabic numeral system in Western Europe.
  • Maslamah al-Majriti (died 1008): a mathematician, astronomer, and chemist in Muslim Spain, made contributions in many areas, from new techniques for surveying to updating and improving the astronomical tables of al-Khwarizmi and inventing a process for producing mercury oxide.[citation needed] He is most famous, though, for having helped transmit knowledge of mathematics and astronomy to Muslim Spain and Christian Western Europe.
  • Abulcasis (936-1013): a physician and scientist in Muslim Spain, is considered to be the father of modern surgery. He wrote numerous medical texts, developed many innovative surgical instruments, and developed a variety of new surgical techniques and practices. His texts were considered the definitive works on surgery in Europe until the Renaissance.
  • Constantine the African (c. 1020&–1087): a Christian native of Carthage, is best known for his translating of ancient Greek and Roman medical texts from Arabic into Latin while working at the Schola Medica Salernitana in Salerno, Italy. Among the works he translated were those of Hippocrates and Galen.
  • Arzachel (1028–1087): the foremost astronomer of the early second millennium, lived in Muslim Spain and greatly expanded the understanding and accuracy of planetary models and terrestrial measurements used for navigation. He developed key technologies including the equatorium and universal latitude-independent astrolabe.
  • Avempace (died 1138): a famous physicist from Muslim Spain who had an important influence on later physicists such as Galileo. He was the first to theorize the concept of a reaction force for every force exerted.
  • Adelard of Bath (c. 1080 – c. 1152): was a 12th-century English scholar, known for his work in astronomy, astrology, philosophy and mathematics.
  • Avenzoar (1091–1161): from Muslim Spain, introduced an experimental method in surgery, employing animal testing in order to experiment with surgical procedures before applying them to human patients.[4] He also performed the earliest dissections and postmortem autopsies on both humans as well as animals.
  • Robert Grosseteste (1168–1253): Bishop of Lincoln, was the central character of the English intellectual movement in the first half of the 13th century and is considered the founder of scientific thought in Oxford. He had a great interest in the natural world and wrote texts on the mathematical sciences of optics, astronomy and geometry. In his commentaries on Aristotle's scientific works, he affirmed that experiments should be used in order to verify a theory, testing its consequences. Roger Bacon was influenced by his work on optics and astronomy.
  • Albert the Great (1193–1280): Doctor Universalis, was one of the most prominent representatives of the philosophical tradition emerging from the Dominican Order. He is one of the thirty-three Saints of the Roman Catholic Church honored with the title of Doctor of the Church. He became famous for his vast knowledge and for his defence of the pacific coexistence between science and religion. Albert was an essential figure in introducing Greek and Islamic science into the medieval universities, although not without hesitation with regard to particular Aristotelian theses. In one of his most famous sayings he asserted: "Science does not consist in ratifying what others say, but of searching for the causes of phenomena." Thomas Aquinas was his most famous pupil.
  • John of Sacrobosco (c. 1195 – c. 1256): was a scholar, monk, and astronomer (probably English, but possibly Irish or Scottish) who taught at the University of Paris and wrote an authoritative and influential mediaeval astronomy text, the Tractatus de Sphaera; the Algorismus, which introduced calculations with Hindu-Arabic numerals into the European university curriculum; the Compotus ecclesiasticis on Easter reckoning; and the Tractatus de quadrante on the construction and use of the astronomical quadrant.
  • Jordanus de Nemore (late 12th, early 13th century): was one of the major pure mathematicians of the Middle Ages. He wrote treatises on mechanics ("the science of weights"), on basic and advanced arithmetic, on algebra, on geometry, and on the mathematics of stereographic projection.
  • Villard de Honnecourt (fl. 13th century): a French engineer and architect who made sketches of mechanical devices such as automatons and perhaps drew a picture of an early escapement mechanism for clockworks.
  • Roger Bacon (1214–94): Doctor Admirabilis, joined the Franciscan Order around 1240 where, influenced by Grosseteste, Alhacen and others, he dedicated himself to studies where he implemented the observation of nature and experimentation as the foundation of natural knowledge. Bacon wrote in such areas as mechanics, astronomy, geography and, most of all, optics. The optical research of Grosseteste and Bacon established optics as an area of study at the medieval university and formed the basis for a continuous tradition of research into optics that went all the way up to the beginning of the 17th century and the foundation of modern optics by Kepler.[8]
  • Ibn al-Baitar (died 1248): a botanist and pharmacist in Muslim Spain, researched over 1400 types of plants, foods, and drugs and compiled pharmaceutical and medical encyclopedias documenting his research. These were used in the Islamic world and Europe until the 19th century.
  • Theodoric Borgognoni (1205-1296): was an Italian Dominican friar and Bishop of Cervia who promoted the uses of both antiseptics and anaesthetics in surgery. His written work had a deep impact on Henri de Mondeville, who studied under him while living in Italy and later became the court physician for King Philip IV of France.
  • William of Saliceto (1210-1277): was an Italian surgeon of Lombardy who advanced medical knowledge and even challenged the work of the renowned Greco-Roman surgeon Galen (129-216 AD) by arguing that allowing pus to form in wounds was detrimental to the health of he patient.
  • Thomas Aquinas (1227–74): Doctor Angelicus, was an Italian theologian and friar in the Dominican Order. As his mentor Albert the Great, he is a Catholic Saint and Doctor of the Church. In addition to his extensive commentaries on Aristotle's scientific treatises, he was also said to have written an important alchemical treatise titled Aurora Consurgens. However, his most lasting contribution to the scientific development of the period was his role in the incorporation of Aristotelianism into the Scholastic tradition.
  • Arnaldus de Villa Nova (1235-1313): was an alchemist, astrologer, and physician from the Crown of Aragon who translated various Arabic medical texts, including those of Avicenna, and performed optical experiments with camera obscura.
  • John Duns Scotus (1266–1308): Doctor Subtilis, was a member of the Franciscan Order, philosopher and theologian. Emerging from the academic environment of the University of Oxford. where the presence of Grosseteste and Bacon was still palpable, he had a different view on the relationship between reason and faith as that of Thomas Aquinas. For Duns Scotus, the truths of faith could not be comprehended through the use of reason. Philosophy, hence, should not be a servant to theology, but act independently. He was the mentor of one of the greatest names of philosophy in the Middle Ages: William of Ockham.
  • Mondino de Liuzzi (c. 1270-1326): was an Italian physician, surgeon, and anatomist from Bologna who was one of the first in Medieval Europe to advocate for the public dissection of cadavers for advancing the field of anatomy. This followed a long-held Christian ban on dissections performed by the Alexandrian school in the late Roman Empire.
  • William of Ockham (1285–1350): Doctor Invincibilis, was an English Franciscan friar, philosopher, logician and theologian. Ockham defended the principle of parsimony, which could already be seen in the works of his mentor Duns Scotus. His principle later became known as Occam's Razor and states that if there are various equally valid explanations for a fact, then the simplest one should be chosen. This became a foundation of what would come to be known as the scientific method and one of the pillars of reductionism in science. Ockham probably died of the Black Plague. Jean Buridan and Nicole Oresme were his followers.
  • Jacopo Dondi dell'Orologio (1290-1359): was an Italian doctor, clockmaker, and astronomer from Padua who wrote on a number of scientific subjects such as pharmacology, surgery, astrology, and natural sciences. He also designed an astronomical clock.
  • Richard of Wallingford (1292-1336): an English abbot, mathematician, astronomer, and horologist who designed an astronomical clock as well as an equatorium to calculate the lunar, solar and planetary longitudes, as well as predict eclipses.
  • Jean Buridan (1300–58): was a French philosopher and priest. Although he was one of the most famous and influent philosophers of the late Middle Ages, his work today is not renowned by people other than philosophers and historians. One of his most significant contributions to science was the development of the theory of impetus, that explained the movement of projectiles and objects in free-fall. This theory gave way to the dynamics of Galileo Galilei and for Isaac Newton's famous principle of Inertia.
  • Guy de Chauliac (1300-1368): was a French physician and surgeon who wrote the Chirurgia magna, a widely read publication throughout medieval Europe that became one of the standard textbooks for medical knowledge for the next three centuries. During the Black Death he clearly distinguished Bubonic Plague and Pneumonic Plague as separate diseases, that they were contagious from person to person, and offered advice such as quarantine to avoid their spread in the population. He also served as the personal physician for three successive popes of the Avignon Papacy.
  • John Arderne (1307-1392): was an English physician and surgeon who invented his own anesthetic that combined hemlock, henbane, and opium. In his writings, he also described how to properly excise and remove the abscess caused by anal fistula.
  • Nicole Oresme (c. 1323–82): was one of the most original thinkers of the 14th century. A theologian and bishop of Lisieux, he wrote influential treatises in both Latin and French on mathematics, physics, astronomy, and economics. In addition to these contributions, Oresme strongly opposed astrology and speculated about the possibility of a plurality of worlds.
  • Giovanni Dondi dell'Orologio (c. 1330-1388): was a clockmaker from Padua, Italy who designed the astarium, an astronomical clock and planetarium that utilized the escapement mechanism that had been recently invented in Europe. He also attempted to describe the mechanics of the solar system with mathematical precision.
Alopecia and I

I’ve got Alopecia. It’s been with me since Pre-k and I expect it will accompany me through the rest of my life.

I’ve been bald

I’ve been patchy

(I painted those dragons in the background)


(That last one was when I got a henna tattoo, but it was very badly done, just take note of the irregular hair pattern)

And I’ve appeared “normal”

(I also painted the dragon on that parasol)

I’ve been asked “Who went at you with a weed-eater?”

I’ve worn wigs.

I’ve been asked if I have cancer.

I’ve been stared at endlessly.

I’ve been devastated that I’ll never be able to dye my hair or style it however I want (which mostly involves long braids and lots of flowers).

I’ve tried all sorts of weird experiments to get my hair back.

And I haven’t had a full head of hair since fourth grade.

But you know what? I never once gave up. Even when I wasn’t comfortable in my own skin, I didn’t sit down and cry. I always thought of something good my Alopecia gave me- like that I’ve still never shaved my legs and that I’ve always been allowed to wear hats to school.

When my hair fell, my spirits did not. When my scalp shone, so did my smile. And eventually, I became 100% comfortable with my own skin. I know I’m beautiful and I will never let my hair tell me otherwise.

So, thank you, Alopecia, my oldest friend. I wouldn’t take the cure for you even if they found one. I don’t know what I would do without you.

And too all else out there with painful trials in life- male, female; alopecia or acne; interior or exterior…. I hope this gives you the example you need to keep your head up.

As I have always said…

Stay strong, and smile always.

~Emylie.

So, this is me back in 2011.

Completely bald, and even missing half an eyebrow if you look.

This is an intensified case of Alopecia areata (not universalis because I didn’t lose all my body hair).
And here, here is my story:
I was “diagnosed with Alopecia partway through Pre-K. The doctor said it was "child’s Alopecia” and that I would grow out of it.
Well, from Pre-K all the way into 6th grade, I had a single bald patch hiding somewhere on my scalp. My mother made me always wear my hair in a ponytail, and I thought it as the most awful thing ever.
But in 6th grade, all BUT a few patches of my hair fell out.
So my mom and I found a wig, and it came in the mail on Halloween, and I got to wear it with my costume- so I was pretty excited.
A few weeks later, I moved schools, and everyone could immediately tell it was a wig. For months, I lied and tried to convince them otherwise, but not a single person believed it. And one day, on the school playground, I broke, and confessed that it was indeed a wig.
I then found myself surprised when the boy who asked said, “Cool!” then asked if I could take it off.
Well, when I did (behind a tree so all the other kids wouldn’t see), I didn’t anticipate that he would come back with his friends and they would come back with theirs. By the end of recess, I was waving my wig around like a flag, and I crammed it into my locker as soon as I got back inside.
That day built a whole lot of courage and self confidence for me. That sort of bravery may not be something for all out there with Alopecia, but I could never encourage anything more highly.
After that, however, my hair did grow back, but I had a huge bald patch on the back of my head (which was all sorts of fun and games in the world of drawing faces). Later, by freshman year, everything fell out. It did that two more times after that, too.

My dad was always there to help: he had his eyes and ears out for little things that he thought might be the cause or the cure. One time, he actually heard it might be a fungus on the skin, and proceeded to cover my head with antifungal foot spray every night for a month. All we got from that was a white, powdery pillow, and a lot of laughs. However, all the little experiments he braved weren’t for nothing; we did discover that tea tree oil is good for the skin and for the hair when it’s there. Massaging/stimulating the scalp is very encouraging for growth. But most useful is Saw Palmetto herbal supplements. Strangely, they’re suggested for men’s prostate health, but at this moment, I’ve got more hair than I have had in five years because I’ve been taking them.
So if you want your hair back, I suggest those three things.

But more than that, I encourage you to embrace yourself. I find my Alopecia to be a blessing (I’ve never had to shave my legs and I can often overcome any struggles in life, and have no problem being far from normal), and I wouldn’t take the cure if they had one.

I am proud to be who I am. Proud to have Alopecia. Proud to stand by all others blessed with it, and give them the courage they’re looking for.
Please, take off your wigs, take off your hats, take off your scarves, and smile. Do something bold like get some eyeliner and draw swirly likes all over your gorgeous scalp, or walk into a hair salon and ask them to “take a little off the sides.” Jump in front of a photographer in the street and captivate their interest.
Break your comfort zone and find a way to love you, for you.
But not matter what you do……
Stay strong, and smile always.
~Emylie.