This is my trick for remembering **trigonometric values.** Forget memorizing those little charts or triangles, this is so much easier.

I learnt this in 10th grade from my favorite teacher (who wasn’t actually my maths teacher at the time) and I still used it for the rest of High School and will probably continue to use it in University.

So what do you do? **You draw the chart in the picture. That one.**

OK, but how do you read it? **Like a table. **(If you’re unfamiliar with radians, do not worry. It also works in degrees, just write: 0, 30, 45, 60, 90 instead.)

For example, if you want to find the sin(pi/2), you simply start at sin(x) and then move over until you’re at pi/2 (or 90 degrees). It says sqrt(4). Now you put that over 2, and you have it. Sin(pi/2) = (sqrt(4))/2, also known as 2/2, or 1.

If you want to find the cos(pi/4), you do the same thing: start at cos(x), move until (pi/4). It says sqrt(2), now put that over 2, and you have cos(pi/4) = sqrt(2)/2.

**For tan(x)**, just take the sin(x) value and divide it by the cos(x) value!

So tan(pi/6) = sqrt(1) / sqrt(3) = 1/sqrt(3).

I find this so easy to remember because the first line starts at zero and increases, and the second line starts at 4 and decreases. It works for any values (yes, even ones above pi/2!) and it’s so simple. I encourage you to start by writing it out on every paper, when you’re studying, and on your exams.