the puzzle planet

9 P E R S O N S - a 999 character fanmix
doing even more zero escape stuff now because i’m trying to pretend i’m waiting for a third game u_u

If you want it, you can have it-
All the lines on the cellar floor.
Don’t mean nothing, just a bad dream-
Even if you think it’s more.

listen ] [ official art ]

zero. numbers don’t lie - the myrnabirds / ace. million dollar man - lana del rey / snake. bulletproof - la roux / santa. sinister kid - the black keys / clover. do the panic - phantom planet / junpei. puzzle pieces - saint motel / june. driving in cars with boys - lana del rey / seven. working man - imagine dragons / lotus. jackie big tits - the kooks / kubota. blow it up - the vaccines 

IMPORTANT DOCTOR WHO ANNOUNCEMENT!

Meet Ms. Delphox, a new character to be introduced in the new season of Doctor Who, as played by Keeley Hawes

Keeley Hawes (Line of Duty, Upstairs Downstairs) will join the cast of Doctor Who, starring opposite the Doctor. Hawes will play Ms. Delphox, a powerful out of this world character with a dark secret. Traveling across space and time, the Twelfth Doctor (Peter Capaldi) and his companion, Clara Oswald (Jenna Coleman), will come face to face with the mysterious Ms. Delphox when they arrive on a strange and puzzling planet.

We cannot wait for the return of new episodes of Doctor Who and will share more information as we hear it. 

Keeley Hawes is to join the cast of Doctor Who and will guest star for one episode of Series 8.

Hawes will play Ms Delphox, a powerful out of this world character with a dark secret. Travelling across space and time the Twelfth Doctor and his companion, Clara Oswald will come face to face with the mysterious Ms Delphox when they arrive on a strange and puzzling planet.

The episode Hawes stars in is written by Steve Thompson and directed by Douglas Mackinnon.

Doctor Who Series 8 is due to air later in 2014 on BBC One.

anonymous asked:

Has Caliborn (not Lord English) actually killed anyone other than Calliope and Yaldabaoth? Like what's he done except solve his Land puzzle and make bad anime art?

His land puzzle involved destroying 15 planets, at least one of which was inhabited.

Planet Nine: A world that shouldn’t exist

Earlier this year scientists presented evidence for Planet Nine, a Neptune-mass planet in an elliptical orbit 10 times farther from our Sun than Pluto. Since then theorists have puzzled over how this planet could end up in such a distant orbit.

New research by astronomers at the Harvard-Smithsonian Center for Astrophysics (CfA) examines a number of scenarios and finds that most of them have low probabilities. Therefore, the presence of Planet Nine remains a bit of a mystery.

“The evidence points to Planet Nine existing, but we can’t explain for certain how it was produced,” says CfA astronomer Gongjie Li, lead author on a paper accepted for publication in the Astrophysical Journal Letters.

Planet Nine circles our Sun at a distance of about 40 billion to 140 billion miles, or 400 - 1500 astronomical units. (An astronomical unit or A.U. is the average distance of the Earth from the Sun, or 93 million miles.) This places it far beyond all the other planets in our solar system. The question becomes: did it form there, or did it form elsewhere and land in its unusual orbit later?

Li and her co-author Fred Adams (University of Michigan) conducted millions of computer simulations in order to consider three possibilities. The first and most likely involves a passing star that tugs Planet Nine outward. Such an interaction would not only nudge the planet into a wider orbit but also make that orbit more elliptical. And since the Sun formed in a star cluster with several thousand neighbors, such stellar encounters were more common in the early history of our solar system.

However, an interloping star is more likely to pull Planet Nine away completely and eject it from the solar system. Li and Adams find only a 10 percent probability, at best, of Planet Nine landing in its current orbit. Moreover, the planet would have had to start at an improbably large distance to begin with.

CfA astronomer Scott Kenyon believes he may have the solution to that difficulty. In two papers submitted to the Astrophysical Journal, Kenyon and his co-author Benjamin Bromley (University of Utah) use computer simulations to construct plausible scenarios for the formation of Planet Nine in a wide orbit.

“The simplest solution is for the solar system to make an extra gas giant,” says Kenyon.

They propose that Planet Nine formed much closer to the Sun and then interacted with the other gas giants, particularly Jupiter and Saturn. A series of gravitational kicks then could have boosted the planet into a larger and more elliptical orbit over time.

“Think of it like pushing a kid on a swing. If you give them a shove at the right time, over and over, they’ll go higher and higher,” explains Kenyon. “Then the challenge becomes not shoving the planet so much that you eject it from the solar system.”

That could be avoided by interactions with the solar system’s gaseous disk, he suggests.

Kenyon and Bromley also examine the possibility that Planet Nine actually formed at a great distance to begin with. They find that the right combination of initial disk mass and disk lifetime could potentially create Planet Nine in time for it to be nudged by Li’s passing star.

“The nice thing about these scenarios is that they’re observationally testable,” Kenyon points out. “A scattered gas giant will look like a cold Neptune, while a planet that formed in place will resemble a giant Pluto with no gas.”

Li’s work also helps constrain the timing for Planet Nine’s formation or migration. The Sun was born in a cluster where encounters with other stars were more frequent. Planet Nine’s wide orbit would leave it vulnerable to ejection during such encounters. Therefore, Planet Nine is likely to be a latecomer that arrived in its current orbit after the Sun left its birth cluster.

Finally, Li and Adams looked at two wilder possibilities: that Planet Nine is an exoplanet that was captured from a passing star system, or a free-floating planet that was captured when it drifted close by our solar system. However, they conclude that the chances of either scenario are less than 2 percent.