telescope array

Coming to you live from space radio.

Deep space radio signals might be trying to tell us something. IBM and the SETI Institute are working together to analyze six terabytes of these complex signals to listen for patterns of life. Researchers are using IBM Analytics on Apache Spark to sift through signals gathered by the Allen Telescope Array, and cognitive machine learning to determine which signals are from humans, and which might be from aliens. Maybe they’ll ask us to call-in.

Learn more about listening for aliens →

Solar System: Things to Know This Week

Reaching out into space yields benefits on Earth. Many of these have practical applications — but there’s something more than that. Call it inspiration, perhaps, what photographer Ansel Adams referred to as nature’s “endless prospect of magic and wonder." 

Our ongoing exploration of the solar system has yielded more than a few magical images. Why not keep some of them close by to inspire your own explorations? This week, we offer 10 planetary photos suitable for wallpapers on your desktop or phone. Find many more in our galleries. These images were the result of audacious expeditions into deep space; as author Edward Abbey said, "May your trails be crooked, winding, lonesome, dangerous, leading to the most amazing view.”

1. Martian Selfie

This self-portrait of NASA’s Curiosity Mars rover shows the robotic geologist in the “Murray Buttes” area on lower Mount Sharp. Key features on the skyline of this panorama are the dark mesa called “M12” to the left of the rover’s mast and pale, upper Mount Sharp to the right of the mast. The top of M12 stands about 23 feet (7 meters) above the base of the sloping piles of rocks just behind Curiosity. The scene combines approximately 60 images taken by the Mars Hand Lens Imager, or MAHLI, camera at the end of the rover’s robotic arm. Most of the component images were taken on September 17, 2016.

2. The Colors of Pluto

NASA’s New Horizons spacecraft captured this high-resolution, enhanced color view of Pluto on July 14, 2015. The image combines blue, red and infrared images taken by the Ralph/Multispectral Visual Imaging Camera (MVIC). Pluto’s surface sports a remarkable range of subtle colors, enhanced in this view to a rainbow of pale blues, yellows, oranges, and deep reds. Many landforms have their own distinct colors, telling a complex geological and climatological story that scientists have only just begun to decode.

3. The Day the Earth Smiled

On July 19, 2013, in an event celebrated the world over, our Cassini spacecraft slipped into Saturn’s shadow and turned to image the planet, seven of its moons, its inner rings — and, in the background, our home planet, Earth. This mosaic is special as it marks the third time our home planet was imaged from the outer solar system; the second time it was imaged by Cassini from Saturn’s orbit, the first time ever that inhabitants of Earth were made aware in advance that their photo would be taken from such a great distance.

4. Looking Back

Before leaving the Pluto system forever, New Horizons turned back to see Pluto backlit by the sun. The small world’s haze layer shows its blue color in this picture. The high-altitude haze is thought to be similar in nature to that seen at Saturn’s moon Titan. The source of both hazes likely involves sunlight-initiated chemical reactions of nitrogen and methane, leading to relatively small, soot-like particles called tholins. This image was generated by combining information from blue, red and near-infrared images to closely replicate the color a human eye would perceive.

5. Catching Its Own Tail

A huge storm churning through the atmosphere in Saturn’s northern hemisphere overtakes itself as it encircles the planet in this true-color view from Cassini. This picture, captured on February 25, 2011, was taken about 12 weeks after the storm began, and the clouds by this time had formed a tail that wrapped around the planet. The storm is a prodigious source of radio noise, which comes from lightning deep within the planet’s atmosphere.

6. The Great Red Spot

Another massive storm, this time on Jupiter, as seen in this dramatic close-up by Voyager 1 in 1979. The Great Red Spot is much larger than the entire Earth.

7. More Stormy Weather

Jupiter is still just as stormy today, as seen in this recent view from NASA’s Juno spacecraft, when it soared directly over Jupiter’s south pole on February 2, 2017, from an altitude of about 62,800 miles (101,000 kilometers) above the cloud tops. From this unique vantage point we see the terminator (where day meets night) cutting across the Jovian south polar region’s restless, marbled atmosphere with the south pole itself approximately in the center of that border. This image was processed by citizen scientist John Landino. This enhanced color version highlights the bright high clouds and numerous meandering oval storms.

8. X-Ray Vision

X-rays stream off the sun in this image showing observations from by our Nuclear Spectroscopic Telescope Array, or NuSTAR, overlaid on a picture taken by our Solar Dynamics Observatory (SDO). The NuSTAR data, seen in green and blue, reveal solar high-energy emission. The high-energy X-rays come from gas heated to above 3 million degrees. The red channel represents ultraviolet light captured by SDO, and shows the presence of lower-temperature material in the solar atmosphere at 1 million degrees.

9. One Space Robot Photographs Another

This image from NASA’s Mars Reconnaissance Orbiter shows Victoria crater, near the equator of Mars. The crater is approximately half a mile (800 meters) in diameter. It has a distinctive scalloped shape to its rim, caused by erosion and downhill movement of crater wall material. Since January 2004, the Mars Exploration Rover Opportunity has been operating in the region where Victoria crater is found. Five days before this image was taken in October 2006, Opportunity arrived at the rim of the crater after a drive of more than over 5 miles (9 kilometers). The rover can be seen in this image, as a dot at roughly the “ten o'clock” position along the rim of the crater. (You can zoom in on the full-resolution version here.)

10. Night Lights

Last, but far from least, is this remarkable new view of our home planet. Last week, we released new global maps of Earth at night, providing the clearest yet composite view of the patterns of human settlement across our planet. This composite image, one of three new full-hemisphere views, provides a view of the Americas at night from the NASA-NOAA Suomi-NPP satellite. The clouds and sun glint — added here for aesthetic effect — are derived from MODIS instrument land surface and cloud cover products.

Discover more lists of 10 things to know about our solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

10

Ask Ethan: Why don’t we build a telescope without mirrors or lenses?

“Why do we need a lens and a mirror to make a telescope now that we have CCD sensors? Instead of having a 10m mirror and lens that focus the light on a small sensor, why not have a 10m sensor instead?”

Every time you shine light through a lens or reflect it off of a mirror, no matter how good it is, a portion of your light gets lost. Today’s largest, most powerful telescopes don’t even simply have a primary mirror, but secondary, tertiary, even quaternary or higher mirrors, and each of those reflections means less light to derive your data from. As CCDs and other digital devices are far more efficient than anything else, why couldn’t we simply replace the primary mirror with a CCD array to collect and measure the light? It seems like a brilliant idea on the surface, and it would, in fact, gather significantly more light over the same collecting area. True, CCDs are more expensive, and there are technical challenges as far as applying filters and aligning the array properly. But there’s a fundamental problem if you don’t use a mirror or lens at all that may turn out to be a dealbreaker: CCDs without lenses or mirrors are incapable of measuring the direction light is coming from. A star or galaxy would appear equally on all portions of your CCD array at once, giving you just a bright, white-light image on every single CCD pixel.

It’s a remarkable idea, but there’s a good physical reason why it won’t pan out. For the foreseeable future, we still need optics to make a telescope! Find out why on this week’s Ask Ethan.

Sun Shines in High-Energy X-rays: X-rays stream off the sun in this image showing observations from by our Nuclear Spectroscopic Telescope Array, or NuSTAR, overlaid on a picture taken by our Solar Dynamics Observatory . This is the first picture of the sun taken by NuSTAR.

js
flickr

Alessandro Caproni on Flickr

Illusions in the Cosmic Clouds: Pareidolia is the psychological phenomenon where people see recognizable shapes in clouds, rock formations, or otherwise unrelated objects or data. There are many examples of this phenomenon on Earth and in space.

When an image from NASAs Chandra X-ray Observatory of PSR B1509-58 a spinning neutron star surrounded by a cloud of energetic particles was released in 2009, it quickly gained attention because many saw a hand-like structure in the X-ray emission.

In a new image of the system, X-rays from Chandra in gold are seen along with infrared data from NASAs Wide-field Infrared Survey Explorer telescope in red, green and blue. Pareidolia may strike again as some people report seeing a shape of a face in WISEs infrared data. What do you see?

NASAs Nuclear Spectroscopic Telescope Array, or NuSTAR, also took a picture of the neutron star nebula in 2014, using higher-energy X-rays than Chandra.

PSR B1509-58 is about 17,000 light-years from Earth.

JPL, a division of the California Institute of Technology in Pasadena, manages the WISE mission for NASA. NASAs Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandras science and flight operations.

Image Credit: X-ray: NASA/CXC/SAO; Infrared: NASA/JPL-Caltech

js
9

Earth Prepares To Snap First-Ever Image Of A Black Hole’s Event Horizon

“Instead of a single telescope, 15-to-20 radio telescopes are arrayed across the globe, observing the same target simultaneously. With up to 12,000 kilometers separating the most distant telescopes, objects as small as 15 microarcseconds (μas) can be resolved: the size of a fly on the Moon.”

One of relativity’s oddest predictions is the existence of black holes, objects so dense and massive that nothing, not event light can escape from them. But that lack-of-escaping is limited to a certain volume of space: that within the black hole’s event horizon. Although black holes have been detected and identified, an event horizon has never yet been imaged. That, however, is likely about to change when the Event Horizon Telescope comes online. Given the general relativistic prediction of the size of the supermassive black hole at the center of our galaxy – 37 microarcseconds – and the resolution of the EHT that spans the diameter of Earth, its event horizon should be visible. Speculations about black holes date back to 1783, and just a few decades after the first black hole candidate was identified, we’re now prepared to directly image one.

Are event horizons real? Get ready, humanity. We’re about to find out!

Disc of gas around HD 142527

This artist’s impression shows the disc of gas and cosmic dust around the young star HD 142527. Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) telescope have seen vast streams of gas flowing across the gap in the disc. These are the first direct observations of these streams, which are expected to be created by giant planets guzzling gas as they grow, and which are a key stage in the birth of giant planets.

Credit: ESO / Atacama Large Millimeter/submillimeter Array

2

This composite NASA image of the spiral galaxy M81, located about 12 million light years away, includes X-ray data from the Chandra X-ray Observatory (blue), optical data from the Hubble Space Telescope (green), infrared data from the Spitzer Space Telescope (pink) and ultraviolet data from GALEX (purple). The inset shows a close-up of the Chandra image. At the center of M81 is a supermassive black hole that is about 70 million times more massive than the Sun.

A new study using data from Chandra and ground-based telescopes, combined with detailed theoretical models, shows that the supermassive black hole in M81 feeds just like stellar mass black holes, with masses of only about ten times that of the Sun. This discovery supports the implication of Einstein’s relativity theory that black holes of all sizes have similar properties, and will be useful for predicting the properties of a conjectured new class of black holes.

In addition to Chandra, three radio arrays (the Giant Meterwave Radio Telescope, the Very Large Array and the Very Long Baseline Array), two millimeter telescopes (the Plateau de Bure Interferometer and the Submillimeter Array), and Lick Observatory in the optical were used to monitor M81. These observations were made simultaneously to ensure that brightness variations because of changes in feeding rates did not confuse the results. Chandra is the only X-ray satellite able to isolate the faint X-rays of the black hole from the emission of the rest of the galaxy.

The supermassive black hole in M81 generates energy and radiation as it pulls gas in the central region of the galaxy inwards at high speed. Therefore, the model that Markoff and her colleagues used to study the black holes includes a faint disk of material spinning around the black hole. This structure would mainly produce X-rays and optical light. A region of hot gas around the black hole would be seen largely in ultraviolet and X-ray light. A large contribution to both the radio and X-ray light comes from jets generated by the black hole. Multiwavelength data is needed to disentangle these overlapping sources of light.

Portraits of the Universe

As an astronomy student, I see plenty of images from space. It’s an odd thing when you think about it. Most of the things that exist are out there, in space and yet only a select few humans are privileged enough to see them in their full beautiful context.

Here I’ll show you some of my favorite images from space and I’ll try to explain what makes them uniquely wonderful. I hope you enjoy!


Home

This satellite photograph of crops in Kansas exemplifies to me the symbiotic relationship we need with our mother planet. Earth is home to us and right now we couldn’t look anywhere else in the universe and find a place like this, where food springs forth from the ground.

It’s humbling and beautiful.

(Image credit: NASA)

Into the Great Beyond

This image of a NASA space shuttle transiting across the face of the Sun is cold-hard proof that not only are we insignificantly small in the face of the vastness of space, but that not even that can stop us.

We’re explorers. We’re brave. We’re capable. We rose phoenix-like from the ashes of stars and we won’t tremble at the yawning dark.

(Image credit: NASA)

The South Pole of Mars

The south pole of Mars, also known as Planum Australe, is a giant, frozen, carbon dioxide and water ice-cap. It looks somewhat like stretch marks, somewhat like a bath bomb and somewhat like a giant bunny rabbit. It is gorgeous though, no matter which way you look at it.

Because of the greenhouse gas nature of methane, some think there’s a potential in the ice caps to recreate the Martian atmosphere. Though this idea can be controversial, it’s the possibility of what could be that quickens my heart.

(Image credit: ESA)

A Fresh Martian Crater

Typically craters are used to denote age. Bodies in space collect them over time like an ever increasing number of scars. Seeing a fresh one though is a uniquely personal experience. It reveals a lot about both the impactor and the body it struck. This image is gorgeous with the ejecta spread out like some sort of postmodern art piece.

(Image Credit: NASA/JPL-Caltech/Univ. of Arizona)

Sunset from Afar

Seen by NASA’s Curiosity Mars rover, this Martian sunset is a stark reminder that the things we find beautiful about Earth, can sometimes be found abroad, injecting our ideas of beauty with new and enlightening perspectives.

On Earth short wavelength light is scattered out the more atmosphere light travels through. This is why as the sun gets lower, it becomes more red. On Earth, our blue skies become a romantic shade of crimson at sunset.

On Mars, the skies, red from dust, become blue at sunset. This is because the atmosphere doesn’t effectively scatter lightwaves until it’s filtered through enough atmosphere (which happens when the sun’s at the horizon). 

(Image credit: NASA, JPL/Caltech/MSSS/Texas A&M Univ)

Forged in Fire

In this picture from the ALMA telescope array, we can see an entire solar system being born. When a nebula collapses into a protoplanetary disk and a star is born in the center, heat and light emerge forth, a primordial solar system.

Gradually, pieces of the disk orbiting around the baby star clump together and, like a snowball rolling down hill, gather more and more material in their orbit.

Paths around the star get cleared as the baby planets grow larger and larger. The black paths you see above are places where planets are being born. An entire solar system is emerging out of the molten storm you see above.

(Image credit: ALMA (ESO/NAOJ/NRAO))

The Jewel of the Solar System

There are worlds unlike anything we could have ever imagined out there. There are beautiful giants totally unlike our home and yet they orbit close enough that we can go there and explore it and its moons, orbiting around it like a solar system within the solar system.

(Image credit: NASA / JPL / Space Science Institute)

A Water World

Around Saturn orbits a small moon named Enceladus. It’s currently shooting geysers of liquid water into space. This mysterious world is one of numerous places suspected to be hospitable for life.

It’s easy to forget that Earth may not be the only place where life could form. Enceladus is only the first step towards breaking ourselves from thinking of the search for alien life as being a terra-centric one.

(Image credit: NASA/JPL/Space Science Institute)

Cosmic Jellyfish

This image of Comet Holmes, with its tails extended out and atmosphere on full display, show exactly how alive the universe really is without us.

As comets near stars, they heat up and two tails form behind them. In their cosmic dance around the stars, they interact in quite lively ways that proove the universe is far from being a still, empty void.

(Image credit: Ivan Eder)

Stardust & Mysteries

This image, collected by the Hubble Space Telescope, collects all manner of light and depth visible to one with a mind for exploration.

Who knows what mysterious places could be hiding behind that nebula? As Carl Sagan once said, “Somewhere, something incredible is waiting to be known.”

(Image credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA), A. Nota (ESA/STScI), and the Westerlund 2 Science Team)

The Cosmos

No image better represents the grandeur, age and vastness of the universe than the Hubble eXtreme Deep Field image.

Astronomers, curious as to how large the universe really was, pointed the Hubble Space Telescope at a patch of darkness between the stars. They left the telescope to stare into the pitch blackness for 23 days collecting what pitiful amount of light there might be out there.

What they got back was a field littered with character, color and life.

This picture shows the universe (literally) at 3.5% of its current age. This is what it looked like 13.2 billion years ago.

(Image credit: NASA; ESA; G. Illingworth, D. Magee, and P. Oesch, University of California, Santa Cruz; R. Bouwens, Leiden University; and the HUDF09 Team)

5

HEART OF AN EXPLODED STAR OBSERVED IN 3-D:
SUPERNOVA FORGES BILLOWING, TANGLED KNOTS OF NEW MOLECULES

** Summary: Deep inside the remains of an exploded star lies a twisted knot of newly minted molecules and dust. Using ALMA, astronomers mapped the location of these new molecules to create a high-resolution 3-D image of this “dust factory,” providing new insights into the relationship between a young supernova remnant and its galaxy. **

Supernovas – the violent endings of the brief yet brilliant lives of massive stars – are among the most cataclysmic events in the cosmos. Though supernovas mark the death of stars, they also trigger the birth of new elements and the formation of new molecules.

In February of 1987, astronomers witnessed one of these events unfold inside the Large Magellanic Cloud, a tiny dwarf galaxy located approximately 160,000 light-years from Earth.

Over the next 30 years, observations of the remnant of that explosion revealed never-before-seen details about the death of stars and how atoms created in those stars – like carbon, oxygen, and nitrogen – spill out into space and combine to form new molecules and dust. These microscopic particles may eventually find their way into future generations of stars and planets.

Recently, astronomers used the Atacama Large Millimeter/submillimeter Array (ALMA) to probe the heart of this supernova, named SN 1987A. ALMA’s ability to see remarkably fine details allowed the researchers to produce an intricate 3-D rendering of newly formed molecules inside the supernova remnant. These results are published in the Astrophysical Journal Letters.

The researchers also discovered a variety of previously undetected molecules in the remnant. These results appear in the Monthly Notices of the Royal Astronomical Society.

“When this supernova exploded, now more than 30 years ago, astronomers knew much less about the way these events reshape interstellar space and how the hot, glowing debris from an exploded star eventually cools and produces new molecules,” said Rémy Indebetouw, an astronomer at the University of Virginia and the National Radio Astronomy Observatory (NRAO) in Charlottesville. “Thanks to ALMA, we can finally see cold ‘star dust’ as it forms, revealing important insights into the original star itself and the way supernovas create the basic building blocks of planets.”

Supernovas – Star Death to Dust Birth

Prior to ongoing investigations of SN 1987A, there was only so much astronomers could say about the impact of supernovas on their interstellar neighborhoods.

It was well understood that massive stars, those approximately 10 times the mass of our Sun or more, ended their lives in spectacular fashion.

When these stars run out of fuel, there is no longer enough heat and energy to fight back against the force of gravity. The outer reaches of the star, once held up by the power of fusion, then come crashing down on the core with tremendous force. The rebound of this collapse triggers a powerful explosion that blasts material into space.

As the endpoint of massive stars, scientists have learned that supernovas have far-reaching effects on their home galaxies. “The reason some galaxies have the appearance that they do today is in large part because of the supernovas that have occurred in them,” Indebetouw said. “Though less than ten percent of stars become supernovas, they nonetheless are key to the evolution of galaxies.”

Throughout the observable universe, supernovas are quite common, but since they appear – on average – about once every 50 years in a galaxy the size of the Milky Way, astronomers have precious few opportunities to study one from its first detonation to the point where it cools enough to form new molecules. Though SN 1987A is not in our home galaxy, it is still close enough for ALMA and other telescopes to study in fine detail.

Capturing 3-D Image of SN1987A with ALMA

For decades, radio, optical, and even X-ray observatories have studied SN 1987A, but obscuring dust in the remnant made it difficult to analyze the supernova’s innermost core. ALMA’s ability to observe at millimeter wavelengths – a region of the electromagnetic spectrum between infrared and radio light – make it possible to see through the intervening dust. The researchers were then able to study the abundance and location of newly formed molecules – especially silicon monoxide (SiO) and carbon monoxide (CO), which shine brightly at the short submillimeter wavelengths that ALMA can perceive.

The new ALMA image and animation show vast new stores of SiO and CO in discrete, tangled clumps within the core of SN 1987A. Scientists previously modeled how and where these molecules would appear. With ALMA, the researchers finally were able to capture images with high enough resolution to confirm the structure inside the remnant and test those models.

Aside from obtaining this 3-D image of SN 1987A, the ALMA data also reveal compelling details about how its physical conditions have changed and continue to change over time. These observations also provide insights into the physical instabilities inside a supernova.

New Insights from SN 1987A

Earlier observations with ALMA verified that SN 1987A produced a massive amount of dust. The new observations provide even more details on how the supernova made the dust as well as the type of molecules found in the remnant.

“One of our goals was to observe SN 1987A in a blind search for other molecules,” said Indebetouw. “We expected to find carbon monoxide and silicon monoxide, since we had previously detected these molecules.” The astronomers, however, were excited to find the previously undetected molecules formyl cation (HCO+) and sulfur monoxide (SO).

“These molecules had never been detected in a young supernova remnant before,” noted Indebetouw. “HCO+ is especially interesting because its formation requires particularly vigorous mixing during the explosion.” Stars forge elements in discrete onion-like layers. As a star goes supernova, these once well-defined bands undergo violent mixing, helping to create the environment necessary for molecule and dust formation.

The astronomers estimate that about 1 in 1,000 silicon atoms from the exploded star is now found in free-floating SiO molecules. The overwhelming majority of the silicon has already been incorporated into dust grains. Even the small amount of SiO that is present is 100 times greater than predicted by dust-formation models. These new observations will aid astronomers in refining their models.

These observations also find that ten percent or more of the carbon inside the remnant is currently in CO molecules. Only a few out of every million carbon atoms are in HCO+ molecules.

New Questions and Future Research

Even though the new ALMA observations shed important light on SN 1987A, there are still several questions that remain. Exactly how abundant are the molecules of HCO+ and SO? Are there other molecules that have yet to be detected? How will the 3-D structure of SN 1987A continue to change over time?

Future ALMA observations at different wavelengths may also help determine what sort of compact object – a pulsar or neutron star – resides at the center of the remnant. The supernova likely created one of these dense stellar objects, but as yet none has been detected.

TOP IMAGE….Supernova 1987A in the Large Magellanic Cloud

UPPER IMAGE….close up of Supernova 1987A

CENTRE IMAGE….Astronomers combined observations from three different observatories to produce this colorful, multiwavelength image of the intricate remains of Supernova 1987A.The red color shows newly formed dust in the center of the supernova remnant, taken at submillimeter wavelengths by the Atacama Large Millimeter/submillimeter Array (ALMA) telescope in Chile.The green and blue hues reveal where the expanding shock wave from the exploded star is colliding with a ring of material around the supernova. The green represents the glow of visible light, captured by NASA’s Hubble Space Telescope. The blue color reveals the hottest gas and is based on data from NASA’s Chandra X-ray Observatory.The ring was initially made to glow by the flash of light from the original explosion. Over subsequent years the ring material has brightened considerably as the explosion’s shock wave slams into it. Supernova 1987A resides 163,000 light-years away in the Large Magellanic Cloud, where a firestorm of star birth is taking place.
Credit: NASA/ESA, ALMA (ESO/NAOJ/NRAO)


LOWER IMAGE….This artist’s illustration of Supernova 1987A reveals the cold, inner regions of the exploded star’s remnants (red) where tremendous amounts of dust were detected and imaged by ALMA. This inner region is contrasted with the outer shell (blue), where the energy from the supernova is colliding (green) with the envelope of gas ejected from the star prior to its powerful detonation.
Credit: A. Angelich; NRAO/AUI/NSF


BOTTOM IMAGE….Remnant of Supernova 1987A as seen by ALMA. Purple area indicates emission from SiO molecules. Yellow area is emission from CO molecules. The blue ring is Hubble data that has been artificially expanded into 3-D.
Credit: ALMA (ESO/NAOJ/NRAO); R. Indebetouw; NASA/ESA Hubble

The Milky Way’s close neighbor, Andromeda, features a dominant source of high-energy X-ray emission, but its identity was mysterious until now. As reported in a new study, NASA’s NuSTAR (Nuclear Spectroscopic Telescope Array) mission has pinpointed an object responsible for this high-energy radiation.

The object, called Swift J0042.6+4112, is a possible pulsar, the dense remnant of a dead star that is highly magnetized and spinning, researchers say. This interpretation is based on its emission in high-energy X-rays, which NuSTAR is uniquely capable of measuring. The object’s spectrum is very similar to known pulsars in the Milky Way.

It is likely in a binary system, in which material from a stellar companion gets pulled onto the pulsar, spewing high-energy radiation as the material heats up.

“We didn’t know what it was until we looked at it with NuSTAR,” said Mihoko Yukita, lead author of a study about the object, based at Johns Hopkins University in Baltimore. The study is published in The Astrophysical Journal.

This candidate pulsar is shown as a blue dot in a NuSTAR X-ray image of Andromeda (also called M31), where the color blue is chosen to represent the highest-energy X-rays. It appears brighter in high-energy X-rays than anything else in the galaxy.

The study brings together many different observations of the object from various spacecraft. In 2013, NASA’s Swift satellite reported it as a high-energy source, but its classification was unknown, as there are many objects emitting low energy X-rays in the region. The lower-energy X-ray emission from the object turns out to be a source first identified in the 1970s by NASA’s Einstein Observatory. Other spacecraft, such as NASA’s Chandra X-ray Observatory and ESA’s XMM-Newton had also detected it. However, it wasn’t until the new study by NuSTAR, aided by supporting Swift satellite data, that researchers realized it was the same object as this likely pulsar that dominates the high energy X-ray light of Andromeda.

Traditionally, astronomers have thought that actively feeding black holes, which are more massive than pulsars, usually dominate the high-energy X-ray light in galaxies. As gas spirals closer and closer to the black hole in a structure called an accretion disk, this material gets heated to extremely high temperatures and gives off high-energy radiation. This pulsar, which has a lower mass than any of Andromeda’s black holes, is brighter at high energies than the galaxy’s entire black hole population.

Even the supermassive black hole in the center of Andromeda does not have significant high-energy X-ray emission associated with it. It is unexpected that a single pulsar would instead be dominating the galaxy in high-energy X-ray light.

“NuSTAR has made us realize the general importance of pulsar systems as X-ray-emitting components of galaxies, and the possibility that the high energy X-ray light of Andromeda is dominated by a single pulsar system only adds to this emerging picture,” said Ann Hornschemeier, co-author of the study and based at NASA’s Goddard Space Flight Center, Greenbelt, Maryland.

Andromeda is a spiral galaxy slightly larger than the Milky Way. It resides 2.5 million light-years from our own galaxy, which is considered very close, given the broader scale of the universe. Stargazers can see Andromeda without a telescope on dark, clear nights.

“Since we can’t get outside our galaxy and study it in an unbiased way, Andromeda is the closest thing we have to looking in a mirror,” Hornschemeier said.

NuSTAR is a Small Explorer mission led by Caltech and managed by JPL for NASA’s Science Mission Directorate in Washington. NuSTAR was developed in partnership with the Danish Technical University and the Italian Space Agency (ASI). The spacecraft was built by Orbital Sciences Corp., Dulles, Virginia. NuSTAR’s mission operations center is at UC Berkeley, and the official data archive is at NASA’s High Energy Astrophysics Science Archive Research Center. ASI provides the mission’s ground station and a mirror archive. JPL is managed by Caltech for NASA.

For

Here’s something for you to start the week off with a bang. This is a computer simulation of a supernova event, the moments when a massive star collapses in on itself to evolve into a neutron star. The violent and knobbly shock wave from the collapse expands out in a fraction of a second, with the coldest gas in the model colored blue and the hottest colored red. Ejected stellar material moves away from the core at speeds that can reach almost 19,000 miles per second.

The simulation was created in 2012 by the Simulating eXtreme Spacetimes (SXS) Project. Now, direct observations of a supernova called 1987A using NASA’s Nuclear Spectroscopic Telescope Array has confirmed a detail found in the model–that the collapse leads to a lopsided ejection of debris in one direction and the stellar core into another. 

Read more from Caltech about how models predicted that perfectly spherical star cores evolve into asymmetric blobs with plumes of broiling hot gasses powered by neutrino emissions. 

(Hubble Space Telescope captured supernova 1987A with a bright ring of material ejected from the dying star before it detonated. The ring is being lit up by the explosion’s shock wave.Credit: ESA/Hubble & NASA.)

Keep reading

NASA just saw something come out of a black hole for the first time ever

You don’t have to know a whole lot about science to know that black holes typically suck things in, not spew things out. But NASA just spotted something mighty strange at the supermassive black hole Markarian 335.

Two of NASA’s space telescopes, including the Nuclear Spectroscopic Telescope Array (NuSTAR), miraculously observed a black hole’s corona “launched” away from the supermassive black hole. Then a massive pulse of X-ray energy spewed out. So, what exactly happened? That’s what scientists are trying to figure out now.

“This is the first time we have been able to link the launching of the corona to a flare,” Dan Wilkins, of Saint Mary’s University, said. “This will help us understand how supermassive black holes power some of the brightest objects in the universe.”

NuSTAR’s principal investigator, Fiona Harrison, noted that the nature of the energetic source is “mysterious,” but added that the ability to actually record the event should provide some clues about the black hole’s size and structure, along with (hopefully) some fresh intel on how black holes function. Luckily for us, this black hole is still 324 million light-years away.

So, no matter what strange things it’s doing, it shouldn’t have any effect on our corner of the universe. 

IBM & SETI vs Aliens

LOOKING FOR extra-terrestrial life is not usually associated with big data analytics and IBM technology, and is usually left to enthusiastic stargazers and people who may have been in the Mojave desert for too long.
But the SETI (Search for Extra-Terrestrial Intelligence) Institute begs to differ. SETI was showcased as an IBM customer at the company’s Insight 2015 conference in Las Vegas, and makes use of IBM’s Cloud Data Services and Apache Spark to analyse huge amounts of data harvested from the Allen Telescope Array in California.
SETI’s goal is to find obvious narrow-band aspects of radio signals that differ from background astrophysical and human signals.
Dr Jill Tarter, holder of the Bernard Oliver Chair at SETI, said that four years of listening to signals has resulted in a collection of 100 million signals and a vast amount of raw data on the frequencies to which they relate.
This has given SETI a large database of signals that it has identified as interference from humans and non-alien sources.
SETI uses a combination of analytical resources in IBM’s Cloud Data Services portfolio and Apache Spark to query this data and determine whether SETI may have missed something in the recorded interference.
The institute also uses this combination of cloud-based analytics and in-memory framework to find faster ways to diagnose signals.