It’s been a while since the last post, but please be assured - Space That Never Was isn’t dead. I had lots of work in the past few months and there was also much happening in my life and I wasn’t able to post regularly. However, right now I’m working on several large updates for the site, so please stay tuned. 

In the meantime here’s a little something for you, another view of Aquila 1 spacecraft. Thanks for your support!

Alternative/Fictional space mission

Aquila spacecraft - design based on 500 day mission configuration of Deep Space Habitat

It has been also featured in some previous posts.

Photonics Dawning as the Communications Light For Evolving NASA Missions
External image

NASA - Goddard Space Flight Center logo.

Oct. 21, 2016

A largely unrecognized field called photonics may provide solutions to some of NASA’s most pressing challenges in future spaceflight.

Photonics explores the many applications of generating, detecting and manipulating photons, or particles of light that, among other things, make up laser beams. On this day in 1983, the General Conference of Weights and Measures adopted the accepted value for the speed of light, an important photonics milestone. Oct. 21, 2016, is Day of Photonics, a biennial event to raise awareness of photonics to the general public. The study has multiple applications across NASA missions, from space communications to reducing the size of mission payloads to performing altitude measurements from orbit.

NASA and Photonics: Making the Connection
Video above: NASA is using photonics to solve some of the most pressing upcoming challenges in spaceflight, such as better data communications from space to Earth. Video Credits: NASA’s Goddard Space Flight Center/Amber Jacobson, producer.

One major NASA priority is to use lasers to make space communications for both near-Earth and deep-space missions more efficient. NASA’s communications systems have matured over the decades, but they still use the same radio-frequency (RF) system developed in the earliest days of the agency. After more than 50 years of using solely RF, NASA is investing in new ways to increase data rates while also finding more efficient communications systems.

Photonics may provide the solution. Several centers across NASA are experimenting with laser communications, which has the potential to provide data rates at least 10 to 100 times better than RF. These higher speeds would support increasingly sophisticated instruments and the transmission of live video from anywhere in the solar system. They would also increase the bandwidth for communications from human exploration missions in deep space, such as those associated with Journey to Mars.

NASA’s Goddard Space Flight Center in Greenbelt, Maryland, launched the first laser communications pathfinder mission in 2013. The Lunar Laser Communications Demonstration (LLCD) proved that a space-based laser communications system was viable and that the system could survive both launch and the space environment. But the mission was short-lived by design, as the host payload crashed into the lunar surface in a planned maneuver a few months after launch.

External image

Animation above: Conceptual animation depicting a satellite using lasers to relay data from Mars to Earth. Animation Credits: NASA’s Goddard Space Flight Center.

The Goddard team is now planning a follow-on mission called the Laser Communications Relay Demonstration (LCRD) to prove the proposed system’s longevity. It will also provide engineers more opportunity to learn the best way to operate it for near-Earth missions.

“We have been using RF since the beginning, 50 to 60 years, so we’ve learned a lot about how it works in different weather conditions and all the little things to allow us to make the most out of the technology, but we don’t have that experience with laser comm,” said Dave Israel, Exploration and Space Communications architect at Goddard and principal investigator on LCRD. “LCRD will allow us to test the performance over all different weather conditions and times of day and learn how to make the most of laser comm.”

Scheduled to launch in 2019, LCRD will simulate real communications support, practicing for two years with a test payload on the International Space Station and two dedicated ground stations in California and Hawaii. The mission could be the last hurdle to implementing a constellation of laser communications relay satellites similar to the Space Network’s Tracking and Data Relay Satellites.

NASA’s Jet Propulsion Laboratory in Pasadena, California, and Glenn Research Center in Cleveland are also following up on LLCD’s success. But both will focus on how laser communications could be implemented in deep-space missions.

Missions to deep space impose special communication challenges because of their distance from Earth. The data return on these missions slowly trickle back to the ground a little at a time using radio frequency. Laser communications could significantly improve data rates in all space regions, from low-Earth orbit to interplanetary.

JPL’s concept, called Deep Space Optical Communications (DSOC), focuses on laser communications’ benefits to data rates and to space and power constraints on missions. The data-rate benefits of laser communications for deep-space missions are clear, but less recognized is that laser communications can also save mass, space and/or power requirements on missions. That could be monumental on missions like the James Webb Space Telescope, which is so large that, even folded, it will barely fit in the largest rocket currently available. Although Webb is an extreme example, many missions today face size constraints as they become more complex. The Lunar Reconnaissance Orbiter mission carried both types of communications systems, and the laser system was half the mass, required 25 percent less power and transferred data at six times the rate of the RF system. Laser communications could also benefit a class of missions called CubeSats, which are about the size of a shoebox. These missions are becoming more popular and require miniaturized parts, including communications and power systems.

Power requirements can become a major challenge on missions to the outer solar system. As spacecraft move away from the sun, solar power becomes less viable, so the less power a payload requires, the smaller the spacecraft battery, saving space, and the easier spacecraft components can be recharged.

Laser communications could help to solve all of these challenges.

The team at Glenn is developing an idea called Integrated Radio and Optical Communications (iROC) to put a laser communications relay satellite in orbit around Mars that could receive data from distant spacecraft and relay their signal back to Earth. The system would use both RF and laser communications, promoting interoperability amongst all of NASA’s assets in space. By integrating both communications systems, iROC could provide services both for new spacecraft using laser communications systems and older spacecraft like Voyager 1 that use RF.

But laser communications is not NASA’s only foray into photonics, nor is it the first. In fact, NASA began using lasers shortly after they were invented. Goddard successfully demonstrated satellite laser ranging, a technique to measure distances, in 1964.

Satellite Laser Ranging is still managed at Goddard. The system uses laser stations worldwide to bounce short pulses of light off of special reflectors installed on satellites. There are also reflectors on the moon that were placed there during the Apollo and Soviet rover programs. By timing the bounce of the pulses, engineers can compute distances and orbits. Measurements are accurate up to a few millimeters. This application is used on numerous NASA missions, such as ICESat-2, which will measure the altitude of the ice surface in the Antarctic and Greenland regions. It will provide important information regarding climate and the health of Earth’s polar regions.

NASA’s Satellite Laser Ranging system consists of eight stations covering North America, the west coast of South America, the Pacific, South Africa and western Australia. NASA and its partners and associated universities operate the stations. SLR is part of the larger International Laser Ranging Service, and NASA’s contribution comprises more than a third of the organization’s total data volume.

From communications to altimetry and navigation, photonics’ importance to NASA missions cannot be understated. As technology continues to evolve, many photonics applications may come to fruition over the next several decades. Others may also be discovered, especially as humanity pushes further out into the universe than ever before.

To find out more, visit

Related links:

Lunar Laser Communications Demonstration (LLCD):

Laser Communications Relay Demonstration (LCRD):

Tracking and Data Relay Satellites:

Deep Space Optical Communications (DSOC):

Integrated Radio and Optical Communications (iROC):

Animation (mentioned), Video (mentioned), Text, Credits: NASA’s Goddard Space Flight Center, by Ashley Hume/Rob Garner.

Full article

     Here, we have the Saturn V rocket, housed inside the Apollo/Saturn V Center at Kennedy Space Center near Titusville, Florida, just a few miles from Launch complex 39, where these beasts once roared into the sky.

     When we look at the enormous first stage of the Saturn V rocket, called an S-IC, we think “spaceship”. Truthfully, the Saturn V first stage never actually made it into space. The stage only burned for the first 150 seconds of flight, then dropped away from the rest of the rocket, all while remaining totally inside Earth’s atmosphere. The S-IC stage is merely an aircraft.

     Even more truthfully, the S-IC stage displayed here at the Apollo/Saturn V Center at the Kennedy Space Center in Florida, never flew at all. It is a static test article, fired while firmly attached to the ground, to make sure the rocket would actually hold together in flight. Obviously, these tests were successful, (e.g. she didn’t blow up), and she sits on our Apollo museum today. I wrote more about this particular stage in a previous post, (click here to view.)

     The rest of the rocket, the second and third stages, called the S-II and S-IVB stages, did fly into space. The S-II put the manned payload into orbit, and the S-IVB was responsible for initially propelling that payload from earth orbit to the moon, an act called “trans-lunar injection” (TLI).

     The particular rocket in this display, except for the first stage, is called SA-514. 514 was going to launch the cancelled Apollo 18 and 19 moon missions.

     The command/service module (CSM) in the photos is called CSM-119. This particular capsule is unique to the Apollo program, because it has five seats. All the others had three. 119 could launch with a crew of three, and land with five, because it was designed it for a possible Skylab rescue mission. It was later used it as a backup capsule for the Apollo-Soyuz Test Project.


53 years ago today (April 12), Yuri Gagarin, a Soviet pilot and cosmonaut, became the first human to travel into space and change history, when his Vostok spacecraft completed an orbit of the Earth.

So on April 12, Gagarin, who turned into an international celebrity and hero, is being commemorated for paving the way for future space exploration by the International Day of Human Space Flight (Cosmonautics Day).

I really recommend looking him up. There’s so much to know about him and the history-making flight.

My favourite thing is probably the landing to an unplanned site: A farmer and her daughter observed the strange scene of a figure in a bright orange suit with a large white helmet landing near them by parachute. Gagarin later recalled, “When they saw me in my space suit and the parachute dragging alongside as I walked, they started to back away in fear. I told them, don’t be afraid, I am a Soviet citizen like you, who has descended from space and I must find a telephone to call Moscow!”

Happy International Day of Human Space Flight!

An illustrated timeline of spacesuit design.

Some incredible Redditors have compiled a visual timeline of spacesuits designed for use in the space program. The chart includes both Soviet, Russian and American space suits as well as technology demonstrators, prototype, and  other suits that didn’t actually make it into space.

Check out the full-sized image here.

Interestingly enough, the G5C suit used on Gemini 8 isn’t included on here, although its immediate two predecessors are. Those were modified G3C suits and only used on that mission. Additionally, the Apollo A1C suit, a modified Gemini G3C, is not included either. That was to be used for the ill-fated Apollo 1 and cancelled Apollo 5 crewed missions.


Very strange things happen to your body if you spend a year in space

NASA Astronaut Scott Kelly returns to Earth Tuesday night after spending almost a year in space.

But his 340 days aboard the International Space Station (ISS) haven’t been all fun and games.

Our bodies evolved on Earth, so they’re not built for weightlessness — which is exactly why NASA plans to use Kelly to study the long-term effects of spaceflight the human body.

Luca on camera

ESA astronaut Luca Parmitano uses a digital still camera during a spacewalk as work continues on the International Space Station. A little more than one hour into the sortie on 16 July, Luca reported water floating inside his helmet. The water was not an immediate health hazard for Luca, but NASA Mission Control decided to end the spacewalk early. Both astronauts are well, and the cause of the leak is still being investigated.

Image credit: NASA/ESA