NASA plans a robotic mission to search for life on Europa | io9

It looks like it’s finally going to happen, an actual mission to Jupiter’s icy moon Europa — one of the the solar system’s best candidates for hosting alien life.

Yesterday, NASA announced an injection of $17.5 billion from the federal government (down by $1.2 billion from its 2010 peak). Of this, $15 million will be allocated for “pre-formulation” work on a mission to Europa, with plans to make detailed observations from orbit and possibly sample its interior oceans with a robotic probe. Mission details are sparse, but if all goes well, it could be launched by 2025 and arriving in the early 2030s.

This is incredibly exciting. Recent evidence points to a reasonable chance of habitability. Its massive subsurface ocean contains almost twice as much water as found on Earth. The water is kept in liquid state owing to the gravitational forces exerted by Jupiter and the moon’s turbulent global ocean currents. The good news is that a probe may not have to dig very deep to conduct its search for life; the moon’s massive plumes are ejecting water directly onto the surface.

[Read more]

Launch to Lovejoy | APOD

Blasting skyward an Atlas V rocket carrying a U.S. Navy satellite pierces a cloud bank in this starry night scene captured on January 20. On its way to orbit from Space Launch Complex 41, Cape Canaveral Air Force Station, planet Earth, the rocket streaks past brightest star Sirius, as seen from a dark beach at Canaveral National Seashore. Above the alpha star of Canis Major, Orion the Hunter strikes a pose familiar to northern winter skygazers. Above Orion is the V-shaped Hyades star cluster, head of Taurus the Bull, and farther still above Taurus it’s easy to spot the compact Pleiades star cluster. Of course near the top of the frame you’ll find the greenish coma and long tail of Comet Lovejoy, astronomical darling of these January nights.

The new Captain Marvel series will be drawn by Kris Anka, and written by the Agent Carter show runners,  Tara Butters and Michele Fazekas.

They will be playing up her roles as a soldier, commander, and diplomat as she heads up a space station with the mission of keeping Earth safe from alien threats. S.W.O.R.D won’t exist in All New All Different Marvel, so she won’t be stepping on any toes.

Kris’s tweaking of Jamie’s design is awesome, maybe even better. I’m impressed with how he made the costume even more sharp and clean.

12 Terrifying Planets You Don’t Want To Visit

1- Carbon Planet

Our planet maintains a high ratio of oxygen to carbon. Carbon actually makes up only about 0.1 percent of earth’s bulk (hence the scarcity of carbon based materials like fossil fuels and diamonds). Near the center of our galaxy however, where carbon is more plentiful than oxygen, planet formation is very different. It is here that you find what cosmologists call carbon planets. The morning sky on a carbon world would be anything but crystal clear and blue. Picture a yellow haze with black clouds of soot. As you descend farther down into the atmosphere you find seas made of compounds like crude oil and tar. The surface of the planet bubbles with foul smelling methane pits and black ooze. The weather forecast doesn’t look good either: it’s raining gasoline and asphalt (…no smoking). But there would be an upside to this “oil-well hell.” You may have g uessed it. Where carbon is plentiful you also find high quantities of diamond.

2- Neptune

On Neptune, one can find constant jet stream winds that whip around the planet at terrifying speeds. Neptune’s jet-stream winds push frozen clouds of natural gas past the north edge of the planet’s Great Dark Spot, an Earth-size hurricane, at a staggering 1,500 miles per hour. That is more than double the speed needed to break the sound barrier. Such wind forces are clearly beyond what a human could withstand. A person who happened to find himself on Neptune would be most likely be ripped apart and lost forever in these violent and perpetual wind currents. It remains a mystery as to how it gets the energy to drive the fastest planetary winds seen in the solar system, despite it being so far from the sun, at times farther from the sun than Pluto, and having relatively weak internal heat.

3- 51 Pegasi b

Nick-named Bellerophon, in honor of the Greek hero who tamed the winged horse Pegasus, this gas giant is over 150 times as massive as earth and made mostly of hydrogen and helium. The problem is that Bellerophon roasts in the light of its star at over 1800 degrees F (1000 degrees C). Bellerophon’s star is over 100 times closer to it than the Sun is to Earth. For one thing, this heat creates an extremely windy atmosphere. As the hot air rises, cool air rushes down to replace it creating 1000 km per hour winds. The heat also ensures that no water vapor exists. However, that does not mean there is no rain. This leads us to Bellerophon’s main quirk. Such intense heat enables the iron composing the planet to be vaporized. As the vapor rises it forms iron vapor clouds, similar in concept to water vapor clouds here on Earth. The difference though, is that these clouds will then proceed to rain a relentless fury of molten iron down upon the planet (…don’t forget your umbrella).

4- COROT exo-3b

The densest and most massive exoplanet to date is a world known as COROT-exo-3b. It is about the size of Jupiter, but 20 times that planet’s mass. This makes COROT-exo-3b about twice as dense as lead. The degree of pressure put upon a human walking the surface of such a planet would be insurmountable. With a mass 20 times that of Jupiter, a human would weigh almost 50 times what they weigh on Earth. That means that a 180 pound man on Earth would weigh 9000 pounds! That amount of stress would crush a human beings skeletal system almost instantly. It would be the equivalent of an elephant sitting on your chest.

5- Mars

On Mars a dust storm can develop in a matter of hours and envelope the entire planet within a few days. They are the largest and most violent dust storms in our solar system. The Martian dust vortices tower over their earthly counterparts reaching the height of Mount Everest with winds in excess of 300 kilometers per hour. After developing, it can take months for a dust storm on Mars to completely expend itself. [Text redacted: see endnote.] Hellas Basin is the deepest impact crater in the Solar System. The temperatures at the bottom of the crater can be 10 degrees warmer than on the surface and the crater is deeply filled with dust. The difference in temperature fuels wind action that picks up the dust, then the storm emerges from the basin.

6- WASP-12b

Simply put, this planet is the hottest planet ever discovered. It measures in at about 4,000 degrees F (2,200 degrees C) and orbits its star closer than any other known world. It goes without saying that anything known to man, including man himself, would instantly incinerate in such an atmosphere. To put it in perspective, the planets’ surface is about half the temperature of the surface of our sun and twice as hot as lava. It also orbits its star at ablistering pace. It completes a full orbit once every Earth day at a distance of only about 2 million miles (3.4 million km).

7- Jupiter

Jupiter’s atmosphere brews storms twice as wide as the Earth itself. These goliaths generate 400 mph winds and titanic lightning bolts 100 times brighter than ones on Earth. Lurking underneath this frightening and dark atmosphere is a 25,000 mile deep ocean of liquid metallic hydrogen. Here on Earth, hydrogen is a colorless, transparent gas, but in the core of Jupiter, hydrogen transforms into something never seen on our planet. In Jupiter’s outer layers, hydrogen is a gas just like on Earth. But as you go deeper, the atmospheric pressure sky-rockets. Eventually the pressure becomes so great that it actually squeezes the electrons out of the hydrogen atoms. Under such extreme conditions, the hydrogen transforms into a liquid metal, conducting electricity as well as heat. Also, like a mirror, it reflects light. So if you were immersed in it, and caught under o ne of those ferocious lightning bolts, you wouldn’t be able to see anything.

8- Pluto

(Note: Pluto is technically no longer classified as a planet). Do not let the picture fool you; this is not a winter wonderland. Pluto is an extremely cold world where frozen nitrogen, carbon monoxide, and methane blanket the surface like snow during most of its 248 year plutonian year. These ices have been transformed from white to a pinkish-brown due to interactions with gamma rays from deep space and the distant Sun. On a clear day the sun provides about as much heat and light as a full moon does back on earth. With Pluto’s surface temperature of -378 to -396 F (-228 to -238 C) your body would freeze solid instantly.

9- CoRoT-7b

The temperatures on the star-facing side of this planet are so hot that they can vaporize rock. Scientists who modeled the atmosphere of CoRoT-7b determined that the planet likely has no volatile gases (carbon dioxide, water vapor, nitrogen), and is instead likely made up of what could be called vaporized rock. The atmosphere of CoRoT-7b could have weather systems that unlike the watery weather on Earth cause pebbles to condense out of the air and rain rocks onto the molten lava surface of the planet. And if the planet doesn’t already sound inhospitable to life, it also could be a volcanic nightmare.

10- Venus 

Whoever gave Venus, the second planet from the sun, the nickname “Earth’s Twin” was flat out WRONG. Except where size is concerned, Venus is not really all that similar to Earth.  For starters, Venus’ atmosphere is chock-full of greenhouse gases like carbon dioxide. These gasses  are responsible for making this planet ‘hellacious’ to the highest regard.

Earth’s twin? More like “Earth’s Evil Twin.”

Our atmosphere, which is primarily responsible for distributing the energy (and heat) we receive from the sun, has the opposite effect of Venus. Instead of heating the planet so that it has a more tropical climate (with heaps of water in various forms), Venus’ atmosphere super-heats the planet. It is so hot that it is totally inhospitable for any kind of life that we are familiar with (at least on the surface of the planet)

. Since Venus’ dense atmosphere is opaque to light at visible wavelengths, we couldn’t see what the surface was like. This led some to speculate that the planet was filled with exotic alien life

Also, Venus’s day is longer than its year. Yes, you read that right. It takes more than 243 Earth days for Venus to complete an entire rotation on its axis, while it takes more than 225 Earth days to make a full orbit around the sun in short, one could cook a 16-inch pizza on Venus in just 7 seconds flat, but you would be dead before you could start your meal.

11- Titan

Titan IS perhaps the most “Earth-like” world in our solar system. It has shores, oceans, rivers, mountains, and valleys. All of these are reminiscent of Earth. However, there is an important distinction to make — While Earth’s surface is covered 70% by water, Titan is covered in hydrocarbons . Titan is the only world known to hold a subsurface body of liquid (besides Earth, of course). Most other bodies are much too cold or too hot to retain any sort of liquid on their surfaces. With Titan’s chilly temperatures, which hang around -289 degrees Fahrenheit (-178 degrees Celsius), water would be frozen solid.  certain substances (ethane and methane) turn from a gas to a liquid at these temperatures.

12-  Io

If you’re looking for a more balmy climate, Io (the inner-most Jovian moon) might be your best bet. Despite it’s distance from the sun (a chilly 741 million miles [780 million km]), tidal stresses between this strange, cheese colored moon and its parent planet can warm this tiny world to temperatures exceeding those found on its sister moons (Europa, Callisto, and Ganymede).

The tidal forces of Jupiter and the other three Galilean moons cause so much stress on Io that there are  more than 400 active volcanoes littering the surface of the moon, which is no more than 2,263 miles (3,642 km) in diameter. This makes Io one of the most geologically active body in our solar system.

The most powerful of Io’s volcanoes is Loki, which is also the most powerful volcano we’ve found in our solar system. It is capable of spitting lava more than 186 miles (300 km) up into space. Furthermore, exo-geologists have discovered a subsurface ocean of magma that extends more than 31 miles (50 km) beneath the  low-density crust, feeding the volcano with energy to emit more heat than all of the volcanoes on Earth combined.

Lastly, Io is sometimes called a land of both fire and ice, as the surface temperatures on the large moon generally hang around about -202 degrees F  (-130 degrees C), while the temperatures near the molten volcanoes can reach about  3000 degrees F (1649 degrees C), giving way to sulfur dioxide snowfields. Even if you were able to find a patch of land with tame temperatures, you would still  be fried by the extreme amount of radiation the moon receives from Jupiter.

I am finally free to shout this one out loud…..

Yesterday a team of us scientists and engineers submitted a proposal to NASA’s Discovery program. The goal: To conduct a mission back to the Saturn system and search for life within its small icy moon, Enceladus! Since all details concerning the mission are still embargoed, and will be until we are selected … if we are selected … I am not free to divulge how we intend to go about this search. But I can say that we will be doing what Cassini cannot, and may in fact be employing diagnostic techniques never used anywhere before in the exploration of the solar system.

I thrill at the thought of it.

When I was a graduate student, moons like Enceladus, and even Titan — both seen in the image here — were mere points of light in the world’s largest telescopes. Forty years later, we’ve been there and know the tantalizing possibilities that are present but hidden and just out of reach.

If our mission is chosen, we may have the chance to make the most intellectually significant and emotionally satisfying discovery humankind has ever made: That a second genesis has occurred in our own backyard and, by inference, that life is not a bug but a feature of the universe in which we live. A look up at the night sky thereafter will never be the same.

Wish us luck!


In anticipation of the New Horizons spacecraft’s historic flyby of Pluto on July 14, here are early images of famous Solar System objects compared with the latest our technology can offer.

From top

  1. Mercury (Mariner 10, 1974 & MESSENGER, 2008)
  2. Venus [Ultraviolet and in false colour] (Mariner 10, 1974 & Venus Express, 2008)
  3. Earth (V-2 Missile, 1946 & International Space Station, 2014)
  4. Moon (J.W. Draper, 1840 & Gregory H. Revera, 2010)
  5. Mars (Mariner 10, 1969 & Mars Orbiter Mission, 2014)
  6. Jupiter (Pioneer 10, 1973 & Cassini, 2001)
  7. Saturn (Pioneer 10, 1979 & Cassini, 2009)
  8. Pluto’s rotation (Hubble Space Telescope, 2003 & New Horizons, 2015)

** Uranus and Neptune are not included as they are only visited by one spacecraft, Voyager 2, in 1986 and 1989 respectively.


The Blue- Glowing Astronaut.

This photo was taken during the Apollo-12 mission way back in 1969. But the reason for the blue glow is still not conclusive. 

Orgonelab’s article - Astronaut Blues takes you on a journey. A journey alongside with physicists and their theories as they try to produce a rationale for this bizarre behavior. It is highly recommended that you read it.

Cassini spacecraft obtained this image of Saturn’s cratered moon Dione on last week, June 16, 2015. 

But the best is yet to come; the next moon after Dione on Cassini’s checklist is mysterious Enceladus, where the probe will make a breathtakingly-close pass of only 30 miles (48 kilometers) from the icy moon’s surface. Enceladus is now known to hide a liquid ocean under its icy crust and, through a system of polar geysers the moon is venting salty water vapor into space and mission scientists hope to use this close pass to further study the composition of this vapor!
credit: NASA/JPL-Caltech/Space Science Institute


Deep Space Industries: New Asteroid-Mining Company 

I wrote this awhile back but with all these ideas and plans being thrown around about future space industries and asteroid missions, this is the best one I have wrote about or heard of. I love this plan. This is something straight out of a science fiction movie (or book).

From Deep Space Industries: The Earth is but a tiny and precious world floating in a sea of natural resources. The riches of the solar system offer humanity both unprecedented prosperity and an improved environment. The resource potential of space outstrips that of any previous frontier - without the environmental impacts. Asteroids are plentiful throughout the solar system. Many orbit close to the Earth and many of these carry vast deposits of resources ranging from water to metals such as iron, gold and platinum – everything we need to expand our civilization into space, to provide for our needs here at home and to increase the wealth of our planetary economy. In addition, the sun shines 24/7 in space, and the electricity beamed to Earth from solar power satellites is carbon-free and leaves no radioactive waste.

With the effects of gravity at a minimum, we can do amazing things when it comes to moving, construction, and innovations in chemistry and physics.  In fact, we are limited only by our own imaginations. All of this in a place safely outside of our delicate biosphere.

OUR VISION:Deep Space Industries believes the human race is ready to begin harvesting the resources of space both for their use in space and to increase the wealth and prosperity of the people of planet Earth.

Deep Space Industries, Inc. The new firm announced sometime in Jan. that it plans to launch a fleet of prospecting spacecraft in 2015, then begin harvesting metals and water from near-Earth asteroids within a decade. This work could make it possible to build and refuel spacecraft in Earth orbit, thus helping our species get a foothold in the final frontier.

“Using resources harvested in space is the only way to afford permanent space development,” Deep Space CEO David Gump said in a statement. Deep Space Industries will hold a press conference today in Santa Monica, Calif., at 10 a.m. PST (1 p.m. EST/1800 GMT) to unveil more details of its bold mission plan; you can watch the webcast live here

“More than 900 new asteroids that pass near Earth are discovered every year,” Gump explained. “They can be like the Iron Range of Minnesota was for the Detroit car industry last century — a key resource located near where it was needed. In this case, metals and fuel from asteroids can expand the in-space industries of this century. That is our strategy.”

The Spacecraft Fleet:

Firefly - A small, low cost, nimble craft that DSI will launch on one way reconnaissance missions to determine the target asteroids composition and spin-rate, rapidly spinning asteroids are harder to capture. Firefly spacecraft will utilize ultra low-cost cubesat and nanosat components, and will be sent into space as secondary “ride along” payloads on large launch vehicles carrying commercial communications and remote sensing satellites

“We can make amazing machines smaller, cheaper and faster than ever before,” Deep Space chairman Rick Tumlinson said in a statement. “Imagine a production line of Fireflies, cocked and loaded and ready to fly out to examine any object that gets near the Earth.

Dragonfly - The next step is to scale up the Firefly spacecraft to include asteroid capture tools, and additional fuel to enable them to return asteroid samples to Earth orbit.  Dragonfly missions will bring back the first payloads of asteroid materials for study, early processing experiments and sale.  Customers will include both scientific researchers and private collectors.  For example, NASA is paying $1 billion for the OSIRIS-REx mission that may bring back 2 kg in 2021.  Collectors pay as much as $1 million per kg for rare meteorites.  DSI will feed part of the returned material into prototypes of its Microgravity Foundry (see below) to demonstrate its practicality for in-space manufacturing using asteroid resources.   Other Devices and Products:

Microgravity Foundry - DSI is developing a patent-pending breakthrough in 3D printers able to output complex metal components using a simple process with few moving parts. The Microgravity Foundry (MGF) will enable utilization of the asteroid material to produce parts, gears, and other components for in-space machine repair and construction of new space infrastructures like solar power satellites.  Propellent Refinery - The water and hydrocarbons found in carbonaceous asteroids will be distilled into propellant for use by space stations, commercial habitats, and communications satellites. Crewed space agency missions to the Moon, Mars, and martian moons, require large quanities of fuel. 90 percent of the mass launched from Earth will need to be fuel. Filling up in Earth orbit will greatly reduce the cost of Mars trips.    Art is done by Bryan Versteeg - Content mostly from Deep Space Industries website. 




Why should you play Wildstar? Because I’m a magical space cowboy wizard in space, that’s why. Because it’s flippin’ gorgeous and doesn’t take itself remotely seriously right up until you realize how dark, morbid, and eerie it is. Then it’s just /hilarious/.

These are from a mini-mission that riffs on the ALIEN movies series.

Also I’m a magical space cowboy wizard in space.