solar technology

4

***NIKOLA TESLA’S INVENTION FOR COLLECTING THE UNLIMITED ENERGY FROM COSMIC RADIATIONS***

US Patent No. 685,957: Apparatus for the Utilization of Radiant Energy

To all whom it may concern:

Be it known that I, NIKOLA TESLA, a citizen of the United States… have invented certain new and useful Improvements in Apparatus for the Utilization of Radiant Energy…

It is well known that certain radiations–such as those of ultra-violet light, cathodic, Roentgen rays, or the like–possess the property of charging and discharging conductors of electricity, the discharge being particularly noticeable when the conductor upon which the rays impinge is negatively electrified. These radiations are generally considered to be ether vibrations of extremely small wave lengths, and in explanation of the phenomena noted it has been assumed by some authorities that they ionize or render conducting the atmosphere through which they are propagated. My own experiments and observations, however, lead me to conclusions more in accord with the theory heretofore advanced by me that sources of such radiant energy throw off with great velocity minute particles of matter which are strongly electrified, and therefore capable of charging an electrical conductor, or, even if not so, may at any rate discharge an electrified conductor either by carrying off bodily its charge or otherwise.

My present application is based upon a discovery which I have made that when rays, or, radiations of the above kind are permitted to fall upon an insulated conducting-body connected to one of the terminals of a condenser while the other terminal of the same is made by independent means to receive or to carry away electricity a current flows into the condenser so long as the insulated body is exposed to the rays, and under the conditions hereinafter specified an indefinite accumulation of electrical energy in the condenser takes place. This energy after a suitable time interval, during which the rays are allowed to act, may manifest itself in a powerful discharge, which may be utilized for the operation or control of mechanical or electrical devices or rendered useful in many other ways.

Figure 1 is a diagram showing the general arrangement of apparatus as usually employed.

Fig. 2 is a similar diagram illustrating more in detail typical forms of the devices or elements used in practice.

Figs. 3 and 4 are diagrammatical representations of modified arrangements suitable for special purposes.

…It will be found that when the radiations of the sun or of any other source capable of producing the effects before described fall upon the plate P an accumulation of electrical energy in the condenser C will result. This phenomenon, I believe, is best explained as follows: The sun, as well as other sources of radiant energy, throws off minute particles of matter positively electrified, which, impinging upon the plate P, communicate continuously an electrical charge to the same. The opposite terminal of the condenser being connected to the ground, which may be considered as a vast reservoir of negative electricity, a feeble current flows continuously into the condenser, and inasmuch as these supposed particles are of an inconceivably small radius or curvature, and consequently charged to a relatively very high potential, this charging of the condenser may continue, as I have actually observed, almost indefinitely, even to the point of rupturing the dielectric. If the device d be of such character that it will operate to close the circuit in which it is included when the potential in the condenser has reached a certain magnitude, the accumulated charge will pass through the circuit, which also includes the receiver R, and operate the latter…

–NIKOLA TESLA.

On June 19, engineers on the ground remotely operated the International Space Station’s robotic arm to remove the Roll-Out Solar Array (ROSA) from the trunk of SpaceX’s Dragon cargo vehicle. Here, you see the experimental solar array unfurl as the station orbits Earth.

Solar panels are an efficient way to power satellites, but they are delicate and large, and must be unfolded when a satellite arrives in orbit. The Roll-Out Solar Array (ROSA) is a new type of solar panel that rolls open in space like a party favor and is more compact than current rigid panel designs.

ROSA is 20% lighter and 4x smaller in volume than rigid panel arrays!

This experiment remained attached to the robotic arm over seven days to test the effectiveness of the advanced, flexible solar array that rolls out like a tape measure. During that time, they also measured power produced by the array and monitored how the technology handled retraction.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

3

Real life solarpunk: neighborhood microgrid in Brooklyn:

Solar Experiment Lets Neighbors Trade Energy Among Themselves

In a promising experiment in an affluent swath of the borough, dozens of solar-panel arrays spread across rowhouse rooftops are wired into a growing network. Called the Brooklyn Microgrid, the project is signing up residents and businesses to a virtual trading platform that will allow solar-energy producers to sell excess-electricity credits from their systems to buyers in the group, who may live as close as next door.

The project is still in its early stages — it has just 50 participants thus far — but its implications could be far reaching. The idea is to create a kind of virtual, peer-to-peer energy trading system built on blockchain, the database technology that underlies cryptocurrencies like Bitcoin.

(via Solar Experiment Lets Neighbors Trade Energy Among Themselves - The New York Times)

Real life solarpunk: neighborhood microgrid in Brooklyn via @fuckyeahicosahedrons

Transparent solar technology represents 'wave of the future'

See-through solar materials that can be applied to windows represent a massive source of untapped energy and could harvest as much power as bigger, bulkier rooftop solar units, scientists report in Nature Energy.

Led by engineering researchers at Michigan State University, the authors argue that widespread use of such highly transparent solar applications, together with the rooftop units, could nearly meet U.S. electricity demand and drastically reduce the use of fossil fuels.

“Highly transparent solar cells represent the wave of the future for new solar applications,” said Richard Lunt, the Johansen Crosby Endowed Associate Professor of Chemical Engineering and Materials Science at MSU. “We analyzed their potential and show that by harvesting only invisible light, these devices can provide a similar electricity-generation potential as rooftop solar while providing additional functionality to enhance the efficiency of buildings, automobiles and mobile electronics.”

Keep reading

theguardian.com
South Australia to get $1bn solar farm and world's biggest battery
System will include 3.4m solar panels and 1.1m batteries, with operations set to begin by end of 2017

A huge $1bn solar farm and battery project will be built and ready to operate in South Australia’s Riverland region by the end of the year.

The battery storage developer Lyon Group says the system will be the biggest of its kind in the world, boasting 3.4m solar panels and 1.1m batteries.

The company says construction will start in months and the project will be built whatever the outcome of the SA government’s tender for a large battery to store renewable energy.

A Lyon Group partner, David Green, says the system, financed by investors and built on privately owned scrubland in Morgan, will be a “significant stimulus” for South Australia.

“The combination of the solar and the battery will significantly enhance the capacity available in the South Australian market,” he said.

Continue Reading.

Scientists design solar cell that captures nearly all energy of solar spectrum

A George Washington University researcher helped design and construct a prototype for a new solar cell that integrates multiple cells stacked into a single device capable of capturing nearly all of the energy in the solar spectrum.

The new design, which converts direct sunlight to electricity with 44.5 percent efficiency, has the potential to become the most efficient solar cell in the world.

The approach is different from the solar panels commonly seen on rooftops or in fields. The new device uses concentrator photovoltaic (CPV) panels that use lenses to concentrate sunlight onto tiny, micro-scale solar cells. Because of their small size – less than one millimeter square – solar cells that utilize more sophisticated materials can be developed cost effectively.

Keep reading

Solar System: 10 Things to Know This Week

State of the Solar System: 10 quick updates from around our galactic neighborhood.

1. Powered by the Sun

Fifty-nine years ago, Vanguard 1 launched to demonstrate a new spacecraft technology – solar power. We’ve been going farther and for longer ever since.

+More on Vanguard 1

2. Mapping Mercury

A big week in history for exploration of the innermost planet. On March 16, 1975, our Mariner 10 made its third and final flyby of Mercury. One day and 36 years later, MESSENGER became the first spacecraft to orbit Mercury. Next up: ESA’s BepiColumbo, undergoing testing now, is set to launch for Mercury in 2018.

+Missions to Mercury

3. Return to Venus

U.S. and Russian scientists are discussing a planned revival of the successful Venera program that revealed much about Venus in the 1960s, 70s and 80s. Meanwhile, Japan’s Akatsuki orbiter continues to study our sister planet.

+More on Venera-D

4. Rocket Power

Back on Earth 91 years ago (March 16, 1926), inventor and dreamer Robet Goddard changed the world forever with the first test of a liquid-fueled rocket. We’ve been going farther and faster ever since.

+More on Goddard

5. Moon Watch

Our Lunar Reconnaissance Orbiter (LRO) has been sending a steady stream of high-resolution images back to Earth for more than seven years.

+More on LRO

6. Busy Mars

There are currently five orbiters (Mars Reconnaissance Orbiter, Mars Odyssey, MAVEN, ESA’s Mars Express and India’s Mars Orbiter Mission) and two rovers (Curiosity and Opportunity) exploring Mars, making it second only to Earth in the number of robotic spacecraft studying its secrets.

+Meet the Mars Fleet

7. Vote for Jupiter

Polls close today (March 20) so vote not to point a real spacecraft camera at Jupiter during the mission’s 5th perijove pass.

+Vote now

8. Science to the Last Second

In a little less than six months, our Cassini orbiter will plunge into Saturn as a spectacular finale to its 19-year mission – but not before it embarks on a completely new mission into unexplored space between Saturn and its mighty rings.

+More on Cassini’s Grand Finale

9. By George?

Happy belated birthday to Uranus, discovered on March 13, 1781 by William Herschel. The English astronomer wanted to name his discovery – the first planet discovered in recorded history – “Georgium Sidus” after England’s King George III. But he was overruled, and astronomer stuck with traditional mythological names – creating an opportunity for 263 years of student jokes at the expense of the ice giant planet’s name.

+More on Uranus

10. Go Farther

The round trip light time from Voyager 1 to Earth is more than 38 hours. Voyager 1 is almost 13 billion miles from our home planet.

+More on Voyager

Discover more lists of 10 things to know about our solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

5

Artist Daan Roosegaarde has created an incredibly beautiful tribute to Vincent van Gogh, an illuminated bike path that glows in the dark. Located in the Netherlands, the path is illuminated by thousands of twinkling stones that feature glow-in-the-dark technology and solar-powered LED lights. (Source)

geardirector  asked:

You know of any examples of wintry Solarpunk?

I’m not sure how all of the logistics would work (I’m more of a sociology guy than a STEM guy), but I don’t see why a colder climate wouldn’t be able to take advantage of renewable energy sources – geothermal and perfected solar technology and such.

Aesthetically, you’d probably end up with something very similar to the “Northern Lights glass igloos” in Finland:

Maybe connect all the igloos with a tunnel/tube system and have them all link up to a big hub at the center. Maybe the hub has advanced solar panels and sits on a geothermal hot spot, and the energy accumulated there could power the surrounding homes and buildings. 

People can and should add to this, because my winter solarpunk imagination is a tad limited. 

Take a Virtual Tour of NASA

Welcome to NASA! Today, we’re taking you behind-the-scenes for a virtual tour looking at our cutting-edge work and humanity’s destiny in deep space!

Starting at 1:30 p.m., we will host a series of Facebook Live events from each of our 10 field centers across the country. Take a look at where we’ll be taking you…

Glenn Research Center
1:30 p.m. EDT

Our Glenn Research Center in Cleveland, OH will host a tour of its Electric Propulsion Lab. This lab is where we test solar propulsion technologies that are critical to powering spacecraft for our deep-space missions. The Electric Propulsion Laboratory houses two huge vacuum chambers that simulate the space environment.

Marshall Space Flight Center
1:50 p.m. EDT

Our Marshall Space Flight Center in Huntsville, AL will host a tour from a Marshall test stand where structural loads testing is performed on parts of our Space Launch System rocket. Once built, this will be the world’s most powerful rocket and will launch humans farther into space than ever before.

Stennis Space Center
2:10 p.m. EDT

Our Stennis Space Center in Bay St. Louis, MS will take viewers on a tour of their test stands to learn about rocket engine testing from their Test Control Center.

Armstrong Flight Research Center
2:30 p.m. EDT 

Our Armstrong Flight Research Center in Edwards, CA will host a tour from their aircraft hangar and Simulator Lab where viewers can learn about our X-Planes program. What’s an X-Plane? They are a variety of flight demonstration vehicles that are used to test advanced technologies and revolutionary designs.

Johnson Space Center
2:50 p.m. EDT

Our Johnson Space Center in Houston, TX will take viewers on a virtual exploration trip through the mockups of the International Space Station and inside our deep-space exploration vehicle, the Orion spacecraft!

Ames Research Center
3:10 p.m. EDT

Our Ames Research Center in California’s Silicon Valley will bring viewers into its Arc Jet Facility, a plasma wind tunnel used to simulate the extreme heat of spacecraft atmospheric entry.

Kennedy Space Center
3:30 p.m. EDT

Our Kennedy Space Center in Florida will bring viewers inside the Vehicle Assembly Building to learn about how we’re preparing for the first launch of America’s next big rocket, the Space Launch System (SLS) rocket.

Langley Research Center
3:50 p.m. EDT

Our Langley Research Center in Hampton, Virginia will bring viewers inside its 14-by-22-foot wind tunnel, where aerodynamic projects are tested.

Goddard Space Flight Center
4:10 p.m. EDT

Our Goddard Space Flight Center in Greenbelt, MD will discuss the upcoming United States total solar eclipse and host its tour from the Space Weather Lab, a large multi-screen room where data from the sun is analyzed and studied.

Jet Propulsion Laboratory
4:30 p.m. EDT

Our Jet Propulsion Laboratory in Pasadena, CA will bring viewers to the Spacecraft Assembly Facility to learn about robotic exploration of the solar system.

So, make sure to join us for all or part of our virtual tour today, starting at 1:30 p.m. EDT! Discover more about the work we’re doing at NASA and be sure to ask your questions in the comment section of each Facebook Live event! 

Additional details and viewing information available HERE

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

Solar Cell Self-Repairs Like a Plant

When leaves are damaged by intense ultraviolet light, they’re able to repair themselves, constantly producing new cells to replace the damaged ones. If only solar cells could do the same thing, they’d last a lifetime. Luckily, scientists have found a way to replicate that natural process using proteins, bacteria and water. These solar cells can’t compete with silicon cells just yet – it will take decades of research to improve them – but it’s an impressive start that could improve ‘artificial leaf’-type solar cells even further.

3

Squinting in the sun, sitting at the window? 
Chinese designers have figured out how to convert solar window source of free electricity and developed a  socket the Socket the Window . On the back of the socket is a solar cell and a vacuum suction cup, through which the device is attached to the glass. Now, on a fine day you can recharge your mobile phone even in the bus.

bbc.com
Roll-up solar panels power Welsh island
The solar panels powering up Flatholm can be unrolled like a carpet in under two minutes.

Roll-up solar panels are being used to help power an island off the coast of Cardiff.

The Rapid Roll system allows flexible solar panels to be unrolled like a carpet from a trailer in two minutes.

The pioneering technology aims to meet demands from increased tourism and environmental and logistical challenges on Flat Holm.

The hope is for the technology in future to offer a solution in areas hit by natural disasters like hurricanes.

This is the first time the system has been used in Wales and it is the first long-term deployment of the technology anywhere in the UK.

The technology was developed by John Hingley, managing director at Renovagen, based in Milton Keynes, Buckinghamshire.

He came up with the idea of scaling up the concept of mobile solar technology while away travelling five years ago.

By making the panels rollable, a much larger power capacity can fit into a smaller box.

So a 4x4’s trailer can take enough solar panelling to power a 120-bed mobile clinic or to desalinate 25,000 litres of sea water every day.

“Compared with traditional rigid panels, we can fit up to 10 times the power in this size container,” said Mr Hingley.