sn1987a

9

The Nearest Supernova Of Our Lifetime Turns 30, And Still Shines

“The supernova light brightened and then dimmed, but the surrounding gas, blown off from the supergiant, remains illuminated by radiation. As shockwaves from the explosion move outwards, they collide with interstellar material, producing brightening rings of material.”

In February of 1987, the first light from a supernova some 168,000 light years away was observed on Earth. It became the closest supernova to be observed since the invention of the telescope. As a result, it’s taught us more about massive star death, ejecta and supernova remnant evolution than any other object in the Universe. Illuminated outer rings showcase ejection events that occurred prior to the final death of the star; continued brightening teach us the rate of expansion of the supernova remnant; the lack of a neutron star at the core teaches us about the power of dust to obscure even radio light from this object. Perhaps most interestingly, neutrinos were observed from this supernova, arriving nearly three hours before the light did, confirming that they move through a star unimpeded, unlike light.

Come get the full story in some amazing pictures, videos and under 200 words of text on today’s Mostly Mute Monday!

(NASA)  The Mysterious Rings of Supernova 1987A
Image Credit: ESA/Hubble, NASA

What’s causing those odd rings in supernova 1987A? Twenty five years ago, in 1987, the brightest supernova in recent history was seen in the Large Magellanic Cloud. At the center of the above picture is an object central to the remains of the violent stellar explosion. Surrounding the center are curious outer rings appearing as a flattened figure 8. Although large telescopes including the Hubble Space Telescope monitor the curious rings every few years, their origin remains a mystery. Pictured above is a Hubble image of the SN1987A remnant taken last year. Speculation into the cause of the rings includes beamed jets emanating from an otherwise hidden neutron star left over from the supernova, and the interaction of the wind from the progenitor star with gas released before the explosion.

SUPERNOVA!

Today is the anniversary of the discovery of the first modern supernova, currently named SN1987A, located in the Tarantala Nebula in the Large Magellanic Cloud.  It was independently discovered by both  Ian Shelton and Oscar Duhalde of the Las Campanas Observatory in Chile on the night of February 23/24, 1987, and within the same 24 hours independently by Albert Jones in New Zealand. Two weeks later, between March 4–12, 1987 it was observed from space by Astron, a large ultraviolet space telescope. The supernova has yet to receive an official name.  

While plenty of modern scientific words can be dated accurately, the older a word is (in general) the harder it is to pin down a date.  The word supernova however, defies this logic.  Late October 1604 (and some sources give the date 6 November 1604) a new and bright object appeared in the sky.  German astronomer and mathematician Johannes Kepler (born 27 December 1571-15 November 1630) noticed the ‘new’ object and unsure what exactly it was, simply named it stella nova, from the Latin words for new star.  It wasn’t until the 1930s that astronomers Walter Baade and Fritz Zwicky started using the term super-nova and by 1938 the hyphen was dropped and the word became supernova.  The first reliably recorded supernova was noted by Pliny the Elder in AD 185.  Notable supernovae (note the plural maintains the Latin form and does not take the -s that English mostly uses) occurred in 1054, noted mainly by Chinese and Arabic astronomers, and the supernova of 1572 noted extensively by Tycho Brahe.

Time-lapse animation of SN1987A from 1994 to 2009, video compilation courtesy Mark Macdonald, via Larsson, J. et al. (2011). “X-ray illumination of the ejecta of supernova 1987A”. Nature 474 (7352): 484–486., used with permission under a Creative Commons 3.0 license.

Today is the anniversary of the discovery of the first modern supernova, currently named SN1987A, located in the Tarantala Nebula in the Large Magellanic Cloud.  It was independently discovered by both  Ian Shelton and Oscar Duhalde of the Las Campanas Observatory in Chile on the night of February 23/24, 1987, and within the same 24 hours independently by Albert Jones in New Zealand. Two weeks later, between March 4–12, 1987 it was observed from space by Astron, a large ultraviolet space telescope. The supernova has yet to receive an official name.  

While plenty of modern scientific words can be dated accurately, the older a word is (in general) the harder it is to pin down a date.  The word supernova however, defies this logic.  Late October 1604 (and some sources give the date 6 November 1604) a new and bright object appeared in the sky.  German astronomer and mathematician Johannes Kepler (born 27 December 1571-15 November 1630) noticed the ‘new’ object and unsure what exactly it was, simply named it stella nova, from the Latin words for new star.  It wasn’t until the 1930s that astronomers Walter Baade and Fritz Zwicky started using the term super-nova and by 1938 the hyphen was dropped and the word became supernova.  The first reliably recorded supernova was noted by Pliny in AD 185.  Notable supernovae (note the plural maintains the Latin form and does not take the -s that English mostly uses) occurred in 1054, noted mainly by Chinese and Arabic astronomers, and the supernova of 1572 noted extensively by Tycho Brahe.

Time-lapse animation of SN1987A from 1994 to 2009, video compilation courtesy Mark Macdonald, via Larsson, J. et al. (2011). “X-ray illumination of the ejecta of supernova 1987A”. Nature 474 (7352): 484–486., used with permission under a Creative Commons 3.0 license.