small magellanic clouds

Near the outskirts of the Small Magellanic Cloud, lies 5 million year old star cluster, NGC 602. Surrounded by gas and dust, NGC 602 is featured in this stunning optical Hubble image of the region, is a combination of images in the X-ray by Chandra, and in the infrared by Spitzer. Fantastic ridges and swept back shapes strongly suggest that energetic radiation and shock waves from NGC 602’s massive young stars have eroded the dusty material and triggered a progression of star formation moving away from the cluster’s center. The background galaxies are hundreds of millions of light-years or more beyond NGC 602.

Image Credit: X-ray: Chandra: NASA/CXC/Univ.Potsdam/L.Oskinova et al;
Optical: Hubble: NASA/STScI; Infrared: Spitzer: NASA/JPL-Caltech 

instagram
3

Airglow above European Southern Observatory (ESO)

Here are gorgeous fulldome views above different telescopes of ESO’s La Silla Observatory in northern Chile. The red and green hues are produced by airglow, waves of alternating air pressure which are caused by various processes in the upper atmosphere. The Large and Small Magellanic Clouds are also visible while Milky Way cuts across the sky.

Credit: P. Horálek/ESO

instagram

Explore the darkness around Wellington, New Zealand - great galactic shots in here including the Magellanic Clouds

Flying Observatory Has Big Plans for New Zealand

Our flying observatory, called SOFIA, carries a 100-inch telescope inside a Boeing 747SP aircraft. Scientists onboard study the life cycle of stars, planets (including the atmospheres of Pluto and Jupiter), nearby planetary systems, galaxies, black holes and complex molecules in space.

Flying South

Usually based in California, SOFIA and its team are returning to the Southern Hemisphere to study objects that aren’t visible from the Northern Hemisphere and to take advantage of the long winter nights. The team operates from Christchurch, New Zealand, regularly between June and August and continues with more big plans for this year.

Working with New Horizons 

Our SOFIA and New Horizons teams are working together again, to learn more about the next object that the New Horizons spacecraft will fly past, Kuiper Belt Object 2014 MU69, or MU69. This will be the farthest object ever encountered by any spacecraft, but little is known about it. Our team on SOFIA will be searching for possible debris around MU69 that could damage the spacecraft and will measure its size, helping the New Horizons team plan their next flyby.

How We Study Distant Celestial Objects from Earth

Our SOFIA team will study MU69 on July 10, 2017, well before New Horizons arrives in January 2019. We can study this distant object from Earth by flying in the faint shadow that it will cast on Earth’s surface as it passes in front of a star. SOFIA will fly directly into the center of this shadow as it moves across the Pacific Ocean. From inside the shadow, the team onboard will study how the light from the star changes as MU69 passes in front it, allowing them to measure its size and to establish if there are any rings or debris around it. The observations will work in the same way that we studied Pluto using SOFIA two weeks before New Horizon’s Pluto Flyby in 2015.

Observing Other Galaxies

The Magellanic Clouds are neighboring galaxies to our own Milky Way Galaxy. We’re studying how stars are forming in the Large and Small Magellanic clouds to compare those processes to star formation in our own galaxy. The Magellanic Clouds are best observed from the southern hemisphere.

And Supernova 1987A

Inside the Large Magellanic Cloud is Supernova 1987A, the closest supernova explosion witnessed in almost 400 years. Our team onboard SOFIA will continue studying this supernova to better understand the material expanding out from it, which may become the building blocks of future stars and planets. Many of our telescopes have studied Supernova 1987A, including the Hubble Space Telescope, the Chandra X-ray Observatory and SOFIA’s predecessor, the Kuiper Airborne Observatory, but the instruments on SOFIA are the only tools we can use to study the debris around it at infrared wavelengths, to better understand characteristics of the dust that cannot be measured using other wavelengths of light.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

NGC 362 is one of only about 170 globular clusters of stars that exist in our Milky Way Galaxy. This star cluster is one of the younger globulars, forming likely well after our Galaxy. NGC 362 can be found with the unaided eye nearly in front of the Small Magellanic Cloud. The featured image was taken with the Hubble Space Telescope to help better understand how massive stars end up near the center of some globular clusters.

Imagine what our night sky would look like if we were located in the middle of this cluster?!

Image Credit: Hubble WFC3, NASA, ESA, J. Heyl, I. Caiazzo, & Javiera Parada (UBC)

instagram

I never like videos that boomerang but still had to share this one - stars rotating over a dead, undecomposed tree in Sossusvlei, Namibia - you can clearly make out the large and small Magellanic Clouds - two minor galaxies close to the Milky Way.

A Gegenschein Lunar Eclipse : Is there anything interesting to see in the direction opposite the Sun? One night last month, there were quite a few things. First, the red-glowing orb on the lower right of the featured image is the full moon, darkened and reddened because it has entered Earths shadow. Beyond Earths cone of darkness are backscattering dust particles orbiting the Sun that standout with a diffuse glow called the gegenschein, visible as a faint band rising from the central horizon and passing behind the Moon. A nearly horizontal stripe of green airglow is also discernable just above the horizon, partly blocked by blowing orange sand. Visible in the distant sky as the blue dot near the top of the image is the star Sirius, while the central band of our Milky Way Galaxy arches up on the image left and down again on the right. The fuzzy light patches just left of center are the Large and Small Magellanic Clouds. Red emission nebulas too numerous to mention are scattered about the sky, but are labelled in a companion annotated image. In the image foreground is the desolate Deadvlei region of the Namib-Naukluft National Park in Namibia, featuring the astrophotographer himself surveying a land and sky so amazing that he described it as one of the top experiences of his life. via NASA

js
flickr

Small Magellanic Cloud by Alan Tough
Via Flickr:
This 6-frame mosaic was captured remotely using iTelescope T12 at the Siding Spring Observatory, New South Wales , Australia. Total imaging time was 114 minutes through Ha-LRGB filters.

NGC 602 and Beyond 

Near the outskirts of the Small Magellanic Cloud, a satellite galaxy some 200 thousand light-years distant, lies 5 million year young star cluster NGC 602. Surrounded by natal gas and dust, NGC 602 is featured in this stunning Hubble image of the region, augmented by images in the X-ray by Chandra, and in the infrared by Spitzer.

Fantastic ridges and swept back shapes strongly suggest that energetic radiation and shock waves from NGC 602’s massive young stars have eroded the dusty material and triggered a progression of star formation moving away from the cluster’s center. At the estimated distance of the Small Magellanic Cloud, the Picture spans about 200 light-years, but a tantalizing assortment of background galaxies are also visible in this sharp multi-colored view. The background galaxies are hundreds of millions of light-years or more beyond NGC 602.