science image

Eclipse Across America

August 21, 2017, the United States experienced a solar eclipse! 

An eclipse occurs when the Moon temporarily blocks the light from the Sun. Within the narrow, 60- to 70-mile-wide band stretching from Oregon to South Carolina called the path of totality, the Moon completely blocked out the Sun’s face; elsewhere in North America, the Moon covered only a part of the star, leaving a crescent-shaped Sun visible in the sky.

During this exciting event, we were collecting your images and reactions online. 

Here are a few images of this celestial event…take a look:

This composite image, made from 4 frames, shows the International Space Station, with a crew of six onboard, as it transits the Sun at roughly five miles per second during a partial solar eclipse from, Northern Cascades National Park in Washington. Onboard as part of Expedition 52 are: NASA astronauts Peggy Whitson, Jack Fischer, and Randy Bresnik; Russian cosmonauts Fyodor Yurchikhin and Sergey Ryazanskiy; and ESA (European Space Agency) astronaut Paolo Nespoli.

Credit: NASA/Bill Ingalls

The Bailey’s Beads effect is seen as the moon makes its final move over the sun during the total solar eclipse on Monday, August 21, 2017 above Madras, Oregon.

Credit: NASA/Aubrey Gemignani

This image from one of our Twitter followers shows the eclipse through tree leaves as crescent shaped shadows from Seattle, WA.

Credit: Logan Johnson

“The eclipse in the palm of my hand”. The eclipse is seen here through an indirect method, known as a pinhole projector, by one of our followers on social media from Arlington, TX.

Credit: Mark Schnyder

Through the lens on a pair of solar filter glasses, a social media follower captures the partial eclipse from Norridgewock, ME.

Credit: Mikayla Chase

While most of us watched the eclipse from Earth, six humans had the opportunity to view the event from 250 miles above on the International Space Station. European Space Agency (ESA) astronaut Paolo Nespoli captured this image of the Moon’s shadow crossing America.

Credit: Paolo Nespoli

This composite image shows the progression of a partial solar eclipse over Ross Lake, in Northern Cascades National Park, Washington. The beautiful series of the partially eclipsed sun shows the full spectrum of the event. 

Credit: NASA/Bill Ingalls

In this video captured at 1,500 frames per second with a high-speed camera, the International Space Station, with a crew of six onboard, is seen in silhouette as it transits the sun at roughly five miles per second during a partial solar eclipse, Monday, Aug. 21, 2017 near Banner, Wyoming.

Credit: NASA/Joel Kowsky

To see more images from our NASA photographers, visit: https://www.flickr.com/photos/nasahqphoto/albums/72157685363271303

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

Let Us See Jupiter Through Your Eyes

Our Juno spacecraft will fly over Jupiter’s Great Red Spot on July 10 at 10:06 p.m. EDT. This will be humanity’s first up-close and personal view of the gas giant’s iconic 10,000-mile-wide storm, which has been monitored since 1830 and possibly existing for more than 350 years.

The data collection of the Great Red Spot is part of Juno’s sixth science flyby over Jupiter’s mysterious cloud tops. Perijove (the point at which an orbit comes closest to Jupiter’s center) will be July 10 at 9:55 p.m. EDT. 

At the time of perijove, Juno will be about 2,200 miles above the planet’s cloud tops. Eleven minutes and 33 seconds later…Juno will have covered another 24,713 miles and will be directly above the coiling crimson cloud tops of the Great Red Spot. The spacecraft will pass about 5,600 miles above its clouds. 

When will we see images from this flyby?

During the flyby, all eight of the spacecraft’s instruments will be turned on, as well as its imager, JunoCam. Because the spacecraft will be collecting data with its Microwave Radiometer (MWR), which measures radio waves from Jupiter’s deep atmosphere, we cannot downlink information during the pass. The MWR can tell us how much water there is and how material is moving far below the cloud tops.

During the pass, all data will be stored on-board…with a downlink planned afterwards. Once the downlink begins, engineering data from the spacecraft’s instruments will come to Earth first, followed by images from JunoCam.

The unprocessed, raw images will be located HERE, on approximately July 14. Follow @NASAJuno on Twitter for updates.

Did you know you can download and process these raw images?

We invite the public to act as a virtual imaging team…participating in key steps of the process, from identifying features of interest to sharing the finished images online. After JunoCam data arrives on Earth, members of the public can process the images to create color pictures. The public also helps determine which points on the planet will be photographed. Learn more about voting on JunoCam’s next target HERE.

JunoCam has four filters: red, green, blue and near-infrared. We get red, green and blue strips on one spacecraft rotation (the spacecraft rotation rate is 2 revolutions per minute) and the near-infrared strips on the second rotation. To get the final image product, the strips must be stitched together and the colors lined up.

Anything from cropping to color enhancing to collaging is fair game. Be creative!

Submit your images to Juno_outreach@jpl.nasa.gov to be featured on the Mission Juno website!

Check out some of these citizen-scientist processed images from previous Juno orbits: 

Credit: Sean Doran (More)

Credit: Amelia Carolina (More)

Credit: Michael Ranger (More)

Credit: Jason Major (More)

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

3

Captain’s Log | September 15, 2017

The end is now upon us. Within hours of the posting of this entry, Cassini will have burned up in the atmosphere of Saturn … a kiloton explosion, spread out against the sky in a pyrrhic display of light and fire, a dazzling flash to signal the dying essence of a lone emissary from another world. As if the myths of old had foretold the future, the great patriarch will consume his child. At that point, that golden machine, so dutiful and strong, will enter the realm of history, and the toils and triumphs of this long march will be done.

For those of us appointed long ago to undertake this journey, it has been a taxing 3 decades, requiring a level of dedication that I could not have predicted, and breathless times when we sprinted for the duration of a marathon. But in return, we were blessed to spend our lives working and playing in that promised land beyond the Sun.

My imaging team members and I were especially blessed to serve as the documentarians of this historic epoch and return a stirring visual record of our travels around Saturn and the glories that we found there. This is our gift to the citizens of planet Earth.

So, it is with both wistful, sentimental reflection and a boundless sense of pride in a commitment met and a job well done that I now turn to face this looming, abrupt finality.

It is doubtful we will soon see a mission as richly suited as Cassini return to this ringed world and shoulder a task as colossal as we have borne over the last 27 years.

To have served on this mission has been to live the rewarding life of an explorer of our time, a surveyor of distant worlds. We wrote our names across the sky. We could not have asked for more.

I sign off now, grateful in knowing that Cassini’s legacy, and ours, will include our mutual roles as authors of a tale that humanity will tell for a very long time to come.

2

Phineas Gage is one of the most famous patients in the history of neuroscience. He was 25 years old when he experienced a serious accident at his work place, where a tamping iron was shot through his head - entering under his eye socket at exiting through the top of his head - after an explosive charge went off. The tamping iron was over a metre long, and after exiting Gage’s head landed 25m away. 

Initially Gage collapsed and went into minor convlusions, but recovered quickly and was able to speak after a few minutes. He walked with little assistance to an ox-cart and was brought to a nearby physician. Initially the physician did not believe his story because he was in such good condition, but was convinced when: 

Mr. G. got up and vomited; the effort of vomiting pressed out about half a teacupful of the brain, which fell upon the floor.

Gage exhibited a number of dramatic behavioural changes following the accident. Harlow, the physician who initially treated Gage, described this change “He is fitful, irreverent, indulging at times in the grossest profanity (which was not pre­vi­ous­ly his custom), manifesting but little deference for his fellows, impatient of restraint or advice when it conflicts with his desires”. However the surgeon Henry Jacob Bigelow described his condition as improving over the course of recovery, stated he was “quite recovered in faculties of body and mind”. This may have been early evidence of neural plasticity. This recovery was also reported by a physician who knew Gage while he lived in Chile, who described his ability to hold on a full time job as a Concord coach driver, a job that required exceptional social skills.

Gage’s neurological deficits following his traumatic brain injury is thought to have been exaggerated and distorted over the course of history, to the point that he is often portrayed as a ‘psychopath’. Scientific analysis of the historical accounts of Gage’s life following his accident, namely by the psychologist Malcolm Macmillan, find that these distorted accounts are most likely untrue, and that Gage made a very good recovery.

Post-mortem analysis of the Gage case concluded that it was the left frontal lobe that was damaged in the accident, although further neurological damage may have resulted from infection. Combined examination of the Phineas Gage case with the other famous cases of Tan and H.M. have concluded that social behaviour, memory, and language are dependent on the co-ordination of a number of different brain areas rather than a single region.

MRI of the Fetal Brain

Advancements in MRI are giving us an unprecedented look at the fetal brain.

Until approximately a decade ago, what researchers knew about the developing prenatal brain came primarily from analyzing the brains of aborted or miscarried fetuses. But studying postmortem brains can be confounding because scientists can’t definitively pinpoint whether the injuries to the brain occurred before or during birth. 

Over the years, however, improvements to MRI are finally enabling researchers to study the developing brain in real time. With these advancements, researchers are just beginning to understand how normal brains develop, and how abnormalities can manifest over the course of development. Scientists cataloguing typical infant brain development with the mini-MRI hope to use it eventually to study the brains of premature babies, who have a high risk of brain damage. Ultimately, clinicians hope to intervene early with therapies, if available and approved, to prevent developmental disorders when there are signs of brain damage in utero or shortly after birth.

Read more here in Nature Medicine. 

The Effect of Music, Prayer & Words on Water by Dr. Masaru Emoto:

Keeping in mind our bodies are 65% water.
You are what you tell yourself you are.
You are what you tell others they are.
Thoughts truly become things… choose good ones!

That Time We Flew Past Pluto…

Two years ago today (July 14), our New Horizons spacecraft made its closest flyby of Pluto…collecting images and science that revealed a geologically complex world. Data from this mission are helping us understand worlds at the edge of our solar system.

The spacecraft is now venturing deeper into the distant, mysterious Kuiper Belt…a relic of solar system formation…to reach its next target. On New Year’s Day 2019, New Horizons will zoom past a Kuiper Belt object known as 2014 MU69.

The Kuiper Belt is a disc-shaped region of icy bodies – including dwarf planets such as Pluto – and comets beyond the orbit of Neptune. It extends from about 30 to 55 Astronomical Units (an AU is the distance from the sun to Earth) and is probably populated with hundreds of thousands of icy bodies larger than 62 miles across, and an estimated trillion or more comets.

Nearly a billion miles beyond Pluto, you may be asking how the spacecraft will function for the 2014 MU69 flyby. Well, New Horizons was originally designed to fly far beyond the Pluto system and explore deeper into the Kuiper Belt. 

The spacecraft carries extra hydrazine fuel for the flyby; its communications system is designed to work from beyond Pluto; its power system is designed to operate for many more years; and its scientific instruments were designed to operate in light levels much lower than it will experience during the 2014 MU69 flyby.

What have we learned about Pluto since its historic flyby in 2015?

During its encounter, the New Horizons spacecraft collected more than 1,200 images of Pluto and tens of gigabits of data. The intensive downlinking of information took about a year to return to Earth! Here are a few things we’ve discovered:

Pluto Has a Heart

This image captured by New Horizons around 16 hours before its closest approach shows Pluto’s “heart.” This stunning image of one of its most dominant features shows us that the heart’s diameter is about the same distance as from Denver to Chicago. This image also showed us that Pluto is a complex world with incredible geological diversity.

Icy Plains

Pluto’s vast icy plain, informally called Sputnik Planitia, resembles frozen mud cracks on Earth. It has a broken surface of irregularly-shaped segments, bordered by what appear to be shallow troughs.

Majestic Mountains

Images from the spacecraft display chaotically jumbled mountains that only add to the complexity of Pluto’s geography. The rugged, icy mountains are as tall as 11,000 feet high.

Color Variations

This high-resolution enhanced color view of Pluto combines blue, red and infrared images taken by the New Horizons spacecraft. The surface of Pluto has a remarkable range of subtle color variations. Many landforms have their own distinct colors, telling a complex geological and climatological story.

Foggy Haze and Blue Atmosphere

Images returned from the New Horizons spacecraft have also revealed that Pluto’s global atmospheric haze has many more layers than scientists realized. The haze even creates a twilight effect that softly illuminates nightside terrain near sunset, which makes them visible to the cameras aboard the spacecraft.

Water Ice

New Horizons detected numerous small, exposed regions of water ice on Pluto. Scientists are eager to understand why water appears exactly where it does, and not in other places.

Stay updated on New Horizons findings by visiting the New Horizons page. You can also keep track of Pluto News on Twitter via @NASANewHorizons.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

With Every Breath You Take, Thank the Ocean

When was the last time you thought about your breathing? Take a breath right now and think about it. You breathe because you need oxygen, a gas which makes up 21 percent of the Earth’s atmosphere. All that oxygen has to come from somewhere. You might already know that it comes from photosynthetic organisms like plants. But did you know that most of the oxygen you breathe comes from organisms in the ocean?

That’s right—more than half of the oxygen you breathe comes from marine photosynthesizers, like phytoplankton and seaweed. Both use carbon dioxide, water and energy from the sun to make food for themselves, releasing oxygen in the process. 

Want to know who to thank? Up top, we have a picture of the giant kelp, a brown algae that grows along coasts in cooler regions around the world. The swirling blue image is of the ocean and was taken from a satellite in space. The light blue areas are where there are high concentrations of chlorophyll, the molecule used by phytoplankton to convert sunlight into energy. Lastly, this zoomed in image of a red algae shows its filamentous hairs, which are only a single cell width across, at 250x zoom. Pretty cool!

The large haemorrhage in this adult brain arose in the basal ganglia region of a patient with hypertension. This is classed as a haemorrhagic stroke. The other form of stroke is an ischemic stroke, which results from a blood clot blocking the flow of blood into areas of the brain.