parametric curves

anonymous asked:

how big is ur slamhole

Given the parametrization of the curve r(t) = cos t i + sin t j + k you can calculate the distance or arc length of my slamhole with a simple integration with respect to arc length


Manipulate[ParametricPlot3D[ {Cos[\[Pi] \[Alpha] (3 - \[Alpha] - (-1 + \[Alpha]) Cos[\[Pi] Cos[ x + y]])] Sin[x] + Cos[y] Sin[\[Pi] \[Alpha] (3 - \[Alpha] - (-1 + \[Alpha]) Cos[\ \[Pi] Cos[x + y]])], Cos[\[Pi] Cos[x + y]], Cos[y] Cos[\[Pi] \[Alpha] (3 - \[Alpha] - (-1 + \[Alpha]) \ Cos[\[Pi] Cos[x + y]])] - Sin[x] Sin[\[Pi] \[Alpha] (3 - \[Alpha] - (-1 + \[Alpha]) Cos[\ \[Pi] Cos[x + y]])]}, {x, 0, 2 \[Pi]}, {y, 0, 2 \[Pi]}, PerformanceGoal -> Quality], {\[Alpha], 0, 1} ]



music: abby lee tee / speechless affairs / side b

vimeo

Powerless Structure