nasa scientist

5

Lego announces new set themed around the women of NASA

  • Toy manufacturer Lego Group has announced it will be creating a set of Legos based around the women of NASA, Community Specialist Hasan Jensen wrote in a blog post for the company on Tuesday.
  • The idea for the project was originally pitched by Maia Weinstock, who submitted it to Lego through the company’s Lego Ideas program.
  • The set will include five women who contributed to NASA’s mission, including computer scientist Margaret Hamilton, mathematician Katherine Johnson, astronaut Sally Ride, astronomer Nancy Grace Roman and astronaut Mae Jemison, the first African-American woman to enter space in 1992. Read more (2/28/17 5:53 PM)

follow @the-future-now

i hate when scientists on tv are like ‘this planet cant have aliens on it because there’s no water! the atmosphere is wrong! theres not enough heat to sustain life!’ because dude theyre aliens, nobodys saying they need any of those things to exist

Solar System: Things to Know This Week

Our solar system is a jewel box filled with a glittering variety of beautiful worlds–and not all of them are planets. This week, we present our solar system’s most marvelous moons.

1. Weird Weather: Titan

Saturn’s hazy moon Titan is larger than Mercury, but its size is not the only way it’s like a planet. Titan has a thick atmosphere, complete with its own “water cycle” – except that it’s way too cold on Titan for liquid water. Instead, rains of liquid hydrocarbons like ethane and methane fall onto icy mountains, run into rivers, and gather into great seas. Our Cassini spacecraft mapped the methane seas with radar, and its cameras even caught a glimpse of sunlight reflecting off the seas’ surface. Learn more about Titan: saturn.jpl.nasa.gov/science/titan/

2. Icy Giant: Ganymede

Jupiter’s moon Ganymede is the largest in the solar system. It’s bigger than Mercury and Pluto, and three-quarters the size of Mars. It’s also the only moon known to have its own magnetic field. Details: solarsystem.nasa.gov/planets/ganymede/indepth

3. Retrograde Rebel: Triton

Triton is Neptune’s largest moon, and the only one in the solar system to orbit in the opposite direction of its planet’s rotation, a retrograde orbit. It may have been captured from the Kuiper Belt, where Pluto orbits. Despite the frigid temperatures there, Triton has cryovolcanic activity – frozen nitrogen sometimes sublimates directly to gas and erupts from geysers on the surface. More on Triton: solarsystem.nasa.gov/planets/triton/indepth

4. Cold Faithful: Enceladus

The most famous geysers in our solar system (outside of those on Earth) belong to Saturn’s moon Enceladus. It’s a small, icy body, but Cassini revealed this world to be one of the solar system’s most scientifically interesting destinations. Geyser-like jets spew water vapor and ice particles from an underground ocean beneath the icy crust of Enceladus. With its global ocean, unique chemistry and internal heat, Enceladus has become a promising lead in our search for worlds where life could exist. Get the details: saturn.jpl.nasa.gov/science/enceladus/

5. Volcano World: Io

Jupiter’s moon Io is subjected to tremendous gravitational forces that cause its surface to bulge up and down by as much as 330 feet (100 m). The result? Io is the most volcanically active body in the Solar System, with hundreds of volcanoes, some erupting lava fountains dozens of miles high. More on Io’s volcanoes: solarsystem.nasa.gov/planets/io/indepth

6. Yin and Yang Moon: Iapetus

When Giovanni Cassini discovered Iapetus in 1671, he observed that one side of this moon of Saturn was bright and the other dark. He noted that he could only see Iapetus on the west side of Saturn, and correctly concluded that Iapetus had one side much darker than the other side. Why? Three centuries later, the Cassini spacecraft solved the puzzle. Dark, reddish dust in Iapetus’s orbital path is swept up and lands on the leading face of the moon. The dark areas absorb energy and become warmer, while uncontaminated areas remain cooler. Learn more: saturn.jpl.nasa.gov/news/2892/cassini-10-years-at-saturn-top-10-discoveries/#nine

7. A Double World: Charon and Pluto

At half the size of Pluto, Charon is the largest of Pluto’s moons and the largest known satellite relative to its parent body. The moon is so big compared to Pluto that Pluto and Charon are sometimes referred to as a double planet system. Charon’s orbit around Pluto takes 6.4 Earth days, and one Pluto rotation (a Pluto day) takes 6.4 Earth days. So from Pluto’s point of view Charon neither rises nor sets, but hovers over the same spot on Pluto’s surface, and the same side of Charon always faces Pluto. Get the details: www.nasa.gov/feature/pluto-and-charon-new-horizons-dynamic-duo

8. “Death Star” Moon: Mimas

Saturn’s moon Mimas has one feature that draws more attention than any other: the crater Herschel, which formed in an impact that nearly shattered the little world. Herschel gives Mimas a distinctive look that prompts an oft-repeated joke. But, yes, it’s a moon. More: olarsystem.nasa.gov/planets/mimas

9. Don’t Be Afraid, It’s Just Phobos

In mythology, Mars is a the god of war, so it’s fitting that its two small moons are called Phobos, “fear,” and Deimos, “terror.” Our Mars Reconnaissance Orbiter caught this look at Phobos, which is roughly 17 miles (27 km) wide. In recent years, NASA scientists have come to think that Phobos will be torn apart by its host planet’s gravity. Details: www.nasa.gov/feature/goddard/phobos-is-falling-apart

Learn more about Phobos: solarsystem.nasa.gov/planets/phobos/indepth

10. The Moon We Know Best

Although decades have passed since astronauts last set foot on its surface, Earth’s moon is far from abandoned. Several robotic missions have continued the exploration. For example, this stunning view of the moon’s famous Tycho crater was captured by our Lunar Reconnaissance Orbiter, which continues to map the surface in fine detail today. More: www.lroc.asu.edu/posts/902

Discover more lists of 10 things to know about our solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

bbc.com
There are diseases hidden in ice, and they are waking up
Long-dormant bacteria and viruses, trapped in ice and permafrost for centuries, are reviving as Earth's climate warms
By Jasmin Fox-Skelly

In a 2005 study, NASA scientists successfully revived bacteria that had been encased in a frozen pond in Alaska for 32,000 years. The microbes, called Carnobacterium pleistocenium, had been frozen since the Pleistocene period, when woolly mammoths still roamed the Earth. Once the ice melted, they began swimming around, seemingly unaffected.

Frozen permafrost soil is the perfect place for bacteria to remain alive for very long periods of time, perhaps as long as a million years. That means melting ice could potentially open a Pandora’s box of diseases.

Five Eclipses in NASA History

On Monday, August 21, 2017, people in North America will have the chance to see an eclipse of the Sun. Anyone within the path of totality may see one of nature’s most awe-inspiring sights – a total solar eclipse. 

Along this path, the Moon will completely cover the Sun, revealing the Sun’s tenuous atmosphere, the corona. The path of totality will stretch from Salem, Oregon, to Charleston, South Carolina. Observers outside this path will still see a partial solar eclipse, where the Moon covers part of the Sun’s disk. Remember: you can never look at the Sun directly, and an eclipse is no exception – be sure to use a solar filter or indirect viewing method to watch partial phases of the eclipse.

Total solar eclipses are a rare chance to study the Sun and Earth in unique ways. During the total eclipse, scientists can observe the faintest regions of the Sun, as well as study the Sun’s effects on Earth’s upper atmosphere. We’ve been using eclipses to learn more about our solar system for more than 50 years. Let’s take a look back at five notable eclipses of the past five decades.

May 30, 1965

A total eclipse crossed the Pacific Ocean on May 30, 1965, starting near the northern tip of New Zealand and ending in Peru. Totality – when the Moon blocks all of the Sun’s face – lasted for 5 minutes and 15 seconds at peak, making this the 3rd-longest solar eclipse totality in the 20th century. Mexico and parts of the Southwestern United States saw a partial solar eclipse, meaning the Moon only blocked part of the Sun. We sent scientists to the path of totality, stationing researchers on South Pacific islands to study the response of the upper atmosphere and ionosphere to the eclipse. 

Additionally, our high-flying jets, scientific balloons, and sounding rockets – suborbital research rockets that fly and collect data for only a few minutes – recorded data in different parts of the atmosphere. A Convair 990 research jet chased the Moon’s shadow as it crossed Earth’s surface, extending totality up to more than nine minutes, and giving scientists aboard more time to collect data. A NASA-funded team of researchers will use the same tactic with two jets to extend totality to more than 7 minutes on Aug. 21, 2017, up from the 2 minutes and 40 seconds observable on the ground. 

March 7, 1970

The total solar eclipse of March 7, 1970, was visible in North America and the northwestern part of South America, with totality stretching to 3 minutes and 28 seconds at maximum. This was the first time a total eclipse in the United States passed over a permanent rocket launch facility – NASA’s Wallops Station (now Wallops Flight Facility) on the coast of Virginia. This eclipse offered scientists from NASA, four universities and seven other research organizations a unique way to conduct meteorology, ionospheric and solar physics experiments using 32 sounding rockets

Also during this eclipse, the Space Electric Propulsion Test, or SERT, mission temporarily shut down because of the lack of sunlight. The experimental spacecraft was unable to restart for two days.

July 10, 1972

Two years later, North America saw another total solar eclipse. This time, totality lasted 2 minutes and 36 seconds at the longest. A pair of scientists from Marshall Space Flight Center in Huntsville, Alabama, traveled to the Canadian tundra to study the eclipse – specifically, a phenomenon called shadow bands. These are among the most ephemeral phenomena that observers see during the few minutes before and after a total solar eclipse. They appear as a multitude of faint rapidly moving bands that can be seen against a white background, such as a large piece of paper on the ground. 

While the details of what causes the bands are not completely understood, the simplest explanation is that they arise from atmospheric turbulence. When light rays pass through eddies in the atmosphere, they are refracted, creating shadow bands.

February 26, 1979

The last total solar eclipse of the 20th century in the contiguous United States was in early 1979. Totality lasted for a maximum of 2 minutes 49 seconds, and the total eclipse was visible on a narrow path stretching from the Pacific Northwest to Greenland. Agencies from Canada and the United States – including NASA – joined forces to build a sounding rocket program to study the atmosphere and ionosphere during the eclipse by observing particles on the edge of space as the Sun’s radiation was suddenly blocked.

July 31, 1981

The USSR got a great view of the Moon passing in front of the Sun in the summer of 1981, with totality lasting just over 2 minutes at maximum. Our scientists partnered with Hawaiian and British researchers to study the Sun’s atmosphere – specifically, a relatively thin region called the chromosphere, which is sandwiched between the Sun’s visible surface and the corona – using an infrared telescope aboard the Kuiper Airborne Observatory. The chromosphere appears as the red rim of the solar disk during a total solar eclipse, whereas the corona has no discernible color to the naked eye.

Watch an Eclipse: August 21, 2017 

On August 21, a total solar eclipse will cross the continental United States from coast to coast for the first time in 99 years, and you can watch.

If skies are clear, people in North America will be able to see a partial or total solar eclipse. Find out what the eclipse will look like in your area, then make sure you have a safe method to watch – like solar viewing glasses or a pinhole projector – and head outside. 

You can also tune into nasa.gov/eclipselive throughout the day on Aug. 21 to see the eclipse like you’ve never seen it before – including a NASA TV show, views from our spacecraft, aircraft, and more than 50 high-altitude balloons.

Get all your eclipse information at https://eclipse2017.nasa.gov/, and follow along with @NASASun on Twitter and NASA Sun Science on Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

Pi Guides the Way

It may be irrational but pi plays an important role in the everyday work of scientists at NASA. 

What Is Pi ?

Pi is the ratio of a circle’s circumference to its diameter. It is also an irrational number, meaning its decimal representation never ends and it never repeats. Pi has been calculated to more than one trillion digits, 

Why March 14?

March 14 marks the yearly celebration of the mathematical constant pi. More than just a number for mathematicians, pi has all sorts of applications in the real world, including on our missions. And as a holiday that encourages more than a little creativity – whether it’s making pi-themed pies or reciting from memory as many of the never-ending decimals of pi as possible (the record is 70,030 digits).

While 3.14 is often a precise enough approximation, hence the celebration occurring on March 14, or 3/14 (when written in standard U.S.  month/day format), the first known celebration occurred in 1988, and in 2009, the U.S. House of Representatives passed a resolution designating March 14 as Pi Day and encouraging teachers and students to celebrate the day with activities that teach students about pi.

5 Ways We Use Pi at NASA

Below are some ways scientists and engineers used pi.

Keeping Spacecraft Chugging Along

Propulsion engineers use pi to determine the volume and surface area of propellant tanks. It’s how they size tanks and determine liquid propellant volume to keep spacecraft going and making new discoveries. 

Getting New Perspectives on Saturn

A technique called pi transfer uses the gravity of Titan’s moon, Titan, to alter the orbit of the Cassini spacecraft so it can obtain different perspectives of the ringed planet.

Learning the Composition of Asteroids

Using pi and the asteroid’s mass, scientists can calculate the density of an asteroid and learn what it’s made of–ice, iron, rock, etc.

Measuring Craters

knowing the circumference, diameter and surface area of a crater can tell scientists a lot about the asteroid or meteor that may have carved it out.

Determining the Size of Exoplanets

Exoplanets are planets that orbit suns other than our own and scientists use pi to search for them. The first step is determining how much the light curve of a planet’s sun dims when a suspected planets passes in front of it.

Want to learn more about Pi? Visit us on Pinterest at: https://www.pinterest.com/nasa/pi-day/

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

NASA calls Gwyneth Paltrow’s ridiculous bio-frequency healing stickers exactly what they are: ridiculous

  • Actress Gwyneth Paltrow’s “Goop” lifestyle brand has no problem hawking products with sensationalized marketing claims.
  • In fact, a short list would probably include $66 jade eggs meant for shoving up vaginas or smoothie sex dust” made of “vanilla mushroom protein powder,” cordyceps caterpillar fungi and other odd ingredients.
  • But now, a NASA scientist is criticizing Paltrow’s “body vibes” stickers, which claim to use “NASA space suit material” to “rebalance the energy frequency in our bodies.”
  • Goop alleged that the stickers are made with “the same conductive carbon material NASA uses to line space suits.” That sounds really impressive, except for the fact that it’s probably not true.
  • A NASA representative told Gizmodo that they “do not have any conductive carbon material” lining their astronaut spacesuits, and if they did, such material wouldn’t be used to monitor human vital signs like Goop claims. Read more (6/23/17)

follow @the-future-now

5 NASA Software Codes You Can Download – For Free!

One of the biggest steps of any mission starts right here on Earth at a computer desk – NASA runs on software, period. Rovers can’t move, spacecraft can’t fly, even rockets can’t blast off without the software codes that run them all.

We’ve compiled hundreds of these powerful codes into one location at software.nasa.gov. And guess what? You can start downloading them right now for free! Here are just a few you can use:  

1. TetrUSS (Tetrahedral Unstructured Software System)

TetrUSS has been used extensively for space launch vehicle analysis and design, like on the Space Launch System, which is planned to take humans to Mars.

You really could say it’s helping us to “blast off.” Outside of NASA, this software has been used to analyze Mars planetary entry vehicles, ballistics and even high-altitude sky diver aerodynamics. Basically if anything has moved through any planetary atmosphere, this software has played a role.

2. KNIFE (part of the FUN3D software and released as a package)

The name may be a bit intimidating, but with good reason – KNIFE packs a powerful punch. 

It was created to help us learn more about the sonic booms that resonate when planes break the sound barrier, but it has also helped develop green energy sources such as wind turbines and techniques to minimize drag for long-haul trucking. Maybe we should re-name this versatile and handy code, “Swiss Army KNIFE?”

3. Cart3D (Automated Triangle Geometry Processing for Surface Modeling and Cartesian Grid Generation)

If software codes went to high school, Cart3D would be Prom Queen. This software is so popular, it is being used in almost every mission area here at NASA. 

Engineers and scientists are currently using it to model everything from advanced drones to quieter supersonic aircraft.

4. FACET (Future Air Traffic Management Concepts Evaluation Tool)

Frequent flyers: this may be your favorite code without even knowing it. FACET was developed to evaluate futuristic concepts in air traffic management, and it has served as a testbed for assessing today’s regular operations. 

To sum it up, this software code helps airports keep planes organized in the air and on the ground.

5. GIPSY-OASIS

GIPSY-OASIS is part of the GPS system to end all GPS systems. It’s so accurate, John Deere used it to help create self-driving tractors.

 How? John Deere already had a navigation system in the works, but it could only be used in certain parts of the world. 

Our ground stations are all across the globe, and our software ensures accuracy down to a few inches. And so, a new breed of tractor was born!  Did we mention this software is free?

These are just a few examples of the software NASA has available for free public and consumer use. To browse the catalog online, check out software.nasa.gov.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

Study Session

Spencer Reid x Reader (smut)

Requested: No. But, this is dedicated to the wonderful @reidoneshots because I promised rach that I would dedicate my next smut to her, and so… here it is ;)

Summary: When you’re struggling to study for you final Law exam, you decide to seek help from your unusually handsome professor…

Word Count: 1,516, Warnings: Swearing, NSFW, Oral Sex, Orgasm Denial, Unprotected Sex (wrap it before you tap it, yo)

A/N: This is a Professor!Reid x Student!Reader so if you’re like grossed out by that then I urge you to skip this fic, but other than that yeah & also I know that Reid doesn’t have a bachelor’s in Law or any affiliation with it, from what we’ve seen but I just thought it would be kinda fun.

Originally posted by hisirishsoufflegirl

You sat on your bed, books sprawled out in every corner as you attempted to take in the extensive information. You were going to take your final exam tomorrow and although you felt prepared, last minute studying was always a great option. Your professor had told you in your last session with him that you could find him on campus in his office if you needed help. “What the heck,” you sighed out, knowing that a little help couldn’t hurt.

You walked into his office and found him sitting amongst masses of essays and books. He took a moment to look up from marking, “Y/N?” he dragged his glasses off of his face, placing it on top of his book. “Hi. I was wondering if I could take you up on that study offer?” you asked setting down your things in the antique chair opposite his desk. “Of course, please sit,” he replied enthusiastically which was unusual considering it was almost 2 in the morning, “Would you like some water?” he inquired, you smiled up at the man before giving a short nod.

Keep reading

Solar System: Things to Know This Week

Get the latest on women making history at NASA, our Juno mission, the Curiosity rover and move!

1. Women at NASA Making History, Creating the Future

Throughout Women’s History Month, we’ve been presenting profiles of the women who are leading the way in deep space exploration.

+ Meet some of them

2. Juno and the Giant

Our Juno spacecraft made its fifth close flyby over giant Jupiter’s mysterious cloud tops.

+ See the latest from the King of Planets

3. When the Road Gets Rough, the Tough Keep Rolling

A routine check of the aluminum wheels on our Curiosity Mars rover has found two small breaks on the rover’s left middle wheel tread–the latest sign of wear and tear as the rover continues its journey, now approaching the 10-mile (16 kilometer) mark. But there’s no sign the robotic geologist won’t keep roving right through its ongoing mission.

+ Get the full report

4. What Do Mars and Dinosaurs Have in Common?

Our research reveals that volcanic activity at the giant Martian volcano Arsia Mons ceased about 50 million years ago, around the time of Earth’s Cretaceous-Paleogene extinction, when large numbers of plant and animal species (including dinosaurs) went extinct. However, there’s no reason to think the two events were more than a cosmic coincidence.

+ Learn how scientists pieced together the past

5. A Comet in Commotion

Images returned from the European Space Agency’s Rosetta mission indicate that during its most recent trip through the inner solar system, the surface of comet 67P/Churyumov-Gerasimenko was a very active place – full of growing fractures, collapsing cliffs and massive rolling boulders.

+ See the many faces of Comet #67P

6. Next Generation Space Robot is Ingenious, Versatile–and Cute

The next rovers to explore another planet might bring along a scout. The Pop-Up Flat Folding Explorer Robot (PUFFER) in development at the Jet Propulsion Laboratory was inspired by origami. Its lightweight design is capable of flattening itself, tucking in its wheels and crawling into places rovers can’t fit.

+ Meet PUFFER

7. Shadowy Dawn

According to data from our Dawn mission to Ceres, shadowed craters on the dwarf planet may be linked to the history of how the small world has been tilted over time by the gravity of planets like Jupiter.

+ Find out how understanding “cycles of obliquity” might solve solar system mysteries

8. On Orbit and Online

We’re developing a  long-term technology demonstration project of what could become the high-speed internet of the sky. The Laser Communications Relay Demonstration (LCRD) will help engineers understand the best ways to operate laser communications systems, which could enable much higher data rates for connections between spacecraft and Earth, such as scientific data downlink and astronaut communications.

+ See how it will work

9. A Big Role for Small Sats in Deep Space Exploration

We selected 10 studies to develop mission concepts using CubeSats and other kinds of very small satellites to investigate Venus, Earth’s moon, asteroids, Mars and the outer planets. “These small but mighty satellites have the potential to enable transformational science,” said Jim Green, director of NASA’s Planetary Science Division.

+ Get the small details

10. Rings Around the Red Planet?

It’s possible that one of our closest neighbors had rings at one point – and may have them again someday. At least, that’s the theory put forth by NASA-funded scientists at Purdue University.

+ See more details about the once and future rings of Mars

Discover more lists of 10 things to know about our solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

NASA just graduated its newest class of astronauts. Out of the over 18,300 applicants from all around the United States, the District of Columbia, Guam, American Samoa, and Puerto Rico, there are the 12 who were selected. For those doing the math, that puts the odds of being selected at less than 1 in 1,500. 2017’s class is full of incredibly talented people with backgrounds ranging from engineering, the Navy, the Marines, to geoscience. One of the most exciting parts? Roughly half of them are women!

Jessica Watkins may be a new astronaut, but she isn’t new to space exploration. Already exploring Mars as part of the JPL team that operates the Curiosity rover, the Stanford graduate enjoys a rich life outside of work. With a Ph.D. from UCLA and a postdoctorate from Caltech working to discover Mars’ geological history, Watkins also writes short stories, flies planes, and plays rugby.