The Keyhole in the Carina Nebula : The dark dusty Keyhole Nebula gets its name from its unusual shape. The looping Keyhole, in this featured classic image by the Hubble Space Telescope, is a smaller region inside the larger Carina Nebula. Dramatic dark dust knots and complex features are sculpted by the winds and radiation of the Carina Nebula’s many massive and energetic stars. In particular, the shape of the dust cloud on the upper left of the Keyhole Nebula may stimulate the human imagination to appear similar to, for example, a superhero flying through a cloud, arm up, with a saved person in tow below. The region lies about 7,500 light-years away in planet Earth’s southern sky. The Keyhole Nebula was created by the dying star Eta Carina , out of the frame, which is prone to violent outbursts during its final centuries. via NASA

js
9

In case you didn’t know, NASA has some serious sciart game when it comes to their mission posters. This is just a fraction of the full galleries for both Shuttle and Space Station missions. I love how all the astronauts are clearly so into this. 

Enjoy your Sunday rabbit hole. 

- Summer

This dazzling image shows the globular cluster Messier 69, or M 69 for short, as viewed through the NASA/ESA Hubble Space Telescope. Globular clusters are dense collections of old stars. In this picture, foreground stars look big and golden when set against the backdrop of the thousands of white, silvery stars that make up M 69.

Another aspect of M 69 lends itself to the bejewelled metaphor: As globular clusters go, M 69 is one of the most metal-rich on record. In astronomy, the term “metal” has a specialised meaning: it refers to any element heavier than the two most common elements in our Universe, hydrogen and helium. The nuclear fusion that powers stars created all of the metallic elements in nature, from the calcium in our bones to the carbon in diamonds. Successive generations of stars have built up the metallic abundances we see today.

Because the stars in globular clusters are ancient, their metallic abundances are much lower than more recently formed stars, such as the Sun. Studying the makeup of stars in globular clusters like M 69 has helped astronomers trace back the evolution of the cosmos.

M 69 is located 29 700 light-years away in the constellation Sagittarius (the Archer). The famed French comet hunter Charles Messier added M 69 to his catalogue in 1780. It is also known as NGC 6637.

The image is a combination of exposures taken in visible and near-infrared light by Hubble’s Advanced Camera for Surveys, and covers a field of view of approximately 3.4 by 3.4 arcminutes.

Object Names: M69

Image Type: Astronomical

Credit: ESA/Hubble & NASA

Time And Space

NASA Sparks Interest in Enigmatic Earthworks of Kazakhstan

Archaeologists call them the Nazca lines of Kazakhstan – hundreds of giant geoglyphs formed with earthen mounds and timber found stretched across the landscape in northern Kazakhstan. They are designed in a variety of geometric shapes, including crosses, squares, rings, and even a swastika, a prehistoric symbol that has been in use for at least 12,000 years. Now NASA is helping to piece together this ancient landscape by using space-age technology to reveal more of the colossal earthworks, recognizable only from the air.

Read more…

Yep. One day I’m going to develop this further. I think space is the perfect frontier for characters in a setting (in which the setting is the universe).

You’ll find out about it in the next 1-5 years ;) For now, enjoy this quick rough- because soon enough you’ll get the full story in due time.

Pluto’s ‘heart’ sheds light on a possible buried ocean


Ever since NASA’s New Horizons spacecraft flew by Pluto last year, evidence has been mounting that the dwarf planet may have a liquid ocean beneath its icy shell. Now, by modeling the impact dynamics that created a massive crater on Pluto’s surface, a team of researchers has made a new estimate of how thick that liquid layer might be.

The study, led by Brown University geologist Brandon Johnson and published in Geophysical Research Letters, finds a high likelihood that there’s more than 100 kilometers of liquid water beneath Pluto’s surface. The research also offers a clue about the composition of that ocean, suggesting that it likely has a salt content similar to that of the Dead Sea.

“Thermal models of Pluto’s interior and tectonic evidence found on the surface suggest that an ocean may exist, but it’s not easy to infer its size or anything else about it,” said Johnson, who is an assistant professor in Brown’s Department of Earth, Environmental and Planetary Sciences. “We’ve been able to put some constraints on its thickness and get some clues about composition.”

The research focused on Sputnik Planum, a basin 900 kilometers across that makes up the western lobe the famous heart-shaped feature revealed during the New Horizons flyby. The basin appears to have been created by an impact, likely by an object 200 kilometers across or larger.

The story of how the basin relates to Pluto’s putative ocean starts with its position on the planet relative to Pluto’s largest moon, Charon. Pluto and Charon are tidally locked with each other, meaning they always show each other the same face as they rotate. Sputnik Planum sits directly on the tidal axis linking the two worlds. That position suggests that the basin has what’s called a positive mass anomaly — it has more mass than average for Pluto’s icy crust. As Charon’s gravity pulls on Pluto, it would pull proportionally more on areas of higher mass, which would tilt the planet until Sputnik Planum became aligned with the tidal axis.

But a positive mass anomaly would make Sputnik Planum a bit of an odd duck as craters go.

“An impact crater is basically a hole in the ground,” Johnson said. “You’re taking a bunch of material and blasting it out, so you expect it to have negative mass anomaly, but that’s not what we see with Sputnik Planum. That got people thinking about how you could get this positive mass anomaly.”

Part of the answer is that, after it formed, the basin has been partially filled in by nitrogen ice. That ice layer adds some mass to the basin, but it isn’t thick enough on its own to make Sputnik Planum have positive mass, Johnson says.

The rest of that mass may be generated by a liquid lurking beneath the surface.

Like a bowling ball dropped on a trampoline, a large impact creates a dent on a planet’s surface, followed by a rebound. That rebound pulls material upward from deep in the planet’s interior. If that upwelled material is denser than what was blasted away by the impact, the crater ends up with the same mass as it had before the impact happened. This is a phenomenon geologists refer to as isostatic compensation.

Water is denser than ice. So if there were a layer of liquid water beneath Pluto’s ice shell, it may have welled up following the Sputnik Planum impact, evening out the crater’s mass. If the basin started out with neutral mass, then the nitrogen layer deposited later would be enough to create a positive mass anomaly.

“This scenario requires a liquid ocean,” Johnson said. “We wanted to run computer models of the impact to see if this is something that would actually happen. What we found is that the production of a positive mass anomaly is actually quite sensitive to how thick the ocean layer is. It’s also sensitive to how salty the ocean is, because the salt content affects the density of the water.”

The models simulated the impact of an object large enough to create a basin of Sputnik Planum’s size hitting Pluto at a speed expected for that part in the solar system. The simulation assumed various thicknesses of the water layer beneath the crust, from no water at all to a layer 200 kilometers thick.

The scenario that best reconstructed Sputnik Planum’s observed size depth, while also producing a crater with compensated mass, was one in which Pluto has an ocean layer more than 100 kilometers thick, with a salinity of around 30 percent.

“What this tells us is that if Sputnik Planum is indeed a positive mass anomaly —and it appears as though it is — this ocean layer of at least 100 kilometers has to be there,” Johnson said. “It’s pretty amazing to me that you have this body so far out in the solar system that still may have liquid water.”

As researchers continue to look at the data sent by New Horizons, Johnson is hopeful that a clearer picture of Pluto’s possible ocean will emerge.
Johnson’s co-authors on the paper were Timothy Bowling of the University of Chicago and Alexander Trowbridge and Andrew Freed from Purdue University.

Messier 28

Messier 28 (also known as M28 or NGC 6626) is a globular cluster in the constellation Sagittarius. It was discovered by French astronomer Charles Messier on July 27, 1764.

In the sky it is less than a degree to the northwest of the 3rd magnitude star Kaus Borealis. This cluster is faintly visible as a hazy patch with a pair of binoculars[9] and can be readily found in a small telescope with a 8 cm (3.1 in) aperture.

M28 is at a distance of about 17,900 light-years away from Earth. It has a combined 551,000 times the mass of the Sun and is 12 billion years old. 18 RR Lyrae type variable stars have been observed in this cluster. In 1986, M28 became the first globular cluster where a millisecond pulsar, PSR B1821–24, was discovered with the Lovell Telescope at Jodrell Bank Observatory.

#Astronomy #Space #Spacegram #Spaceflight #Nasa #ESA #ASI #Astronaut #Universe #Cosmos #Sky #Earth #Nebula #Galaxy #Love #MarsGeneration #TheMarsGeneration #MoonColonist #Moon #Astro_Lorenzo #Messier28 #M28 #Messier

Made with Instagram

Terra eclipsa o Sol durante a viagem de volta da missão Apollo 12.
.
The Earth eclipses the Sun during the trip back of Apollo 12 mission.
.
Credit: NASA
.
#nasa #retro #tbt #apollo12 #apollo #apollomission #tripbackhome #viagemdevolta #eclipse #sun #sol #earth #terra #astronomia #astronomy #astrogram #observatoriog1 #solarsunday #space #espaço #lua #moon

Made with Instagram
5

ALMA EXPLORES THE HUBBLE ULTRA DEEP FIELD
DEEPEST EVER MILLIMETRE OBSERVATIONS OF EARLY UNIVERSE


International teams of astronomers have used the Atacama Large Millimeter/submillimeter Array (ALMA) to explore the distant corner of the Universe first revealed in the iconic images of the Hubble Ultra Deep Field (HUDF). These new ALMA observations are significantly deeper and sharper than previous surveys at millimetre wavelengths. They clearly show how the rate of star formation in young galaxies is closely related to their total mass in stars. They also trace the previously unknown abundance of star-forming gas at different points in time, providing new insights into the “Golden Age” of galaxy formation approximately 10 billion years ago.

The new ALMA results will be published in a series of papers appearing in the Astrophysical Journal and Monthly Notices of the Royal Astronomical Society. These results are also among those being presented this week at the Half a Decade of ALMA conference in Palm Springs, California, USA.

In 2004 the Hubble Ultra Deep Field images — pioneering deep-field observations with the NASA/ESA Hubble Space Telescope ( http://www.spacetelescope.org) — were published (https://www.spacetelescope.org/images/heic0406a/) . These spectacular pictures probed more deeply than ever before and revealed a menagerie of galaxies stretching back to less than a billion years after the Big Bang. The area was observed several times by Hubble and many other telescopes, resulting in the deepest view (https://www.spacetelescope.org/images/heic1219b/) of the Universe to date.

Astronomers using ALMA have now surveyed this seemingly unremarkable, but heavily studied, window into the distant Universe for the first time both deeply and sharply in the millimetre range of wavelengths [1]. This allows them to see the faint glow from gas clouds and also the emission from warm dust in galaxies in the early Universe.

ALMA has observed the HUDF for a total of around 50 hours up to now. This is the largest amount of ALMA observing time spent on one area of the sky so far.

One team led by Jim Dunlop (University of Edinburgh, United Kingdom) used ALMA to obtain the first deep, homogeneous ALMA image of a region as large as the HUDF. This data allowed them to clearly match up the galaxies that they detected with objects already seen with Hubble and other facilities.

This study showed clearly for the first time that the stellar mass of a galaxy is the best predictor of star formation rate in the high redshift Universe. They detected essentially all of the high-mass galaxies [2] and virtually nothing else.

Jim Dunlop, lead author on the deep imaging paper sums up its importance: “This is a breakthrough result. For the first time we are properly connecting the visible and ultraviolet light view of the distant Universe from Hubble and far-infrared/millimetre views of the Universe from ALMA.”

The second team, led by Manuel Aravena of the Núcleo de Astronomía, Universidad Diego Portales, Santiago, Chile, and Fabian Walter of the Max Planck Institute for Astronomy in Heidelberg, Germany, conducted a deeper search across about one sixth of the total HUDF [3].

“We conducted the first fully blind, three-dimensional search for cool gas in the early Universe,” said Chris Carilli, an astronomer with the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, USA and member of the research team. “Through this, we discovered a population of galaxies that is not clearly evident in any other deep surveys of the sky.” [4]

Some of the new ALMA observations were specifically tailored to detect galaxies that are rich in carbon monoxide, indicating regions primed for star formation. Even though these molecular gas reservoirs give rise to the star formation activity in galaxies, they are often very hard to see with Hubble. ALMA can therefore reveal the “missing half” of the galaxy formation and evolution process.

“The new ALMA results imply a rapidly rising gas content in galaxies as we look back further in time,” adds lead author of two of the papers, Manuel Aravena (Núcleo de Astronomía, Universidad Diego Portales, Santiago, Chile). “This increasing gas content is likely the root cause for the remarkable increase in star formation rates during the peak epoch of galaxy formation, some 10 billion years ago.”

The results presented today are just the start of a series of future observations to probe the distant Universe with ALMA. For example, a planned 150-hour observing campaign of the HUDF will further illuminate the star-forming potential history of the Universe.

“By supplementing our understanding of this missing star-forming material, the forthcoming ALMA Large Program will complete our view of the galaxies in the iconic Hubble Ultra Deep Field,” concludes Fabian Walter.

###

Notes

[1] Astronomers specifically selected the area of study in the HUDF, a region of space in the faint southern constellation of Fornax - (https://en.wikipedia.org/wiki/Fornax) (The Furnace), so ground-based telescopes in the southern hemisphere, like ALMA, could probe the region, expanding our knowledge about the very distant Universe.

Probing the deep, but optically invisible, Universe was one of the primary science goals for ALMA.

[2] In this context “high mass” means galaxies with stellar masses greater than 20 billion times that of the Sun ( 2 × 10^10 solar masses). For comparison, the Milky Way is a large galaxy and has a mass of around 100 billion solar masses.

[3] This region of sky is about seven hundred times smaller than the area of the disc of the full Moon as seen from Earth. One of the most startling aspects of the HUDF was the vast number of galaxies found in such a tiny fraction of the sky.

[4] ALMA’s ability to see a completely different portion of the electromagnetic spectrum from Hubble allows astronomers to study a different class of astronomical objects, such as massive star-forming clouds, as well as objects that are otherwise too faint to observe in visible light, but visible at millimetre wavelengths.

The search is referred to as “blind” as it was not focussed on any particular object.

The new ALMA observations of the HUDF include two distinct, yet complementary types of data: continuum observations, which reveal dust emission and star formation, and a spectral emission line survey, which looks at the cold molecular gas fueling star formation. The second survey is particularly valuable because it includes information about the degree to which light from distant objects has been redshifted by the expansion of the Universe. Greater redshift means that an object is further away and seen farther back in time. This allows astronomers to create a three-dimensional map of star-forming gas as it evolves over cosmic time.

IMAGE 1….This image combines a background picture taken by the NASA/ESA Hubble Space Telescope (blue/green) with a new very deep ALMA view of this field (orange, marked with circles). All the objects that ALMA sees appear to be massive star-forming galaxies.
This image is based on the ALMA survey by J. Dunlop and colleagues, covering the full HUDF area.
Credit:
ALMA (ESO/NAOJ/NRAO)/NASA/ESA/J. Dunlop et al. and S. Beckwith (STScI) and the HUDF Team.

IMAGE 2….These cutout images are from a combination of a background picture taken by the NASA/ESA Hubble Space Telescope (blue/green) with a new very deep ALMA view of the field (orange, marked with circles). All the objects that ALMA sees appear to be massive star-forming galaxies.
This image is based on the ALMA survey by J. Dunlop and colleagues, covering the full HUDF area.
Credit:
ALMA (ESO/NAOJ/NRAO)/NASA/ESA/J. Dunlop et al. and S. Beckwith (STScI) and the HUDF Team.

IMAGE 3….This image, called the Hubble eXtreme Deep Field (XDF), combines Hubble observations taken over the past decade of a small patch of sky in the constellation of Fornax. With a total of over two million seconds of exposure time, it is the deepest image of the Universe ever made, combining data from previous images including the Hubble Ultra Deep Field (taken in 2003 and 2004) and Hubble Ultra Deep Field Infrared (2009).
The image covers a region less than a tenth of the width of the full Moon across, making it just a 30 millionth of the whole sky. Yet even in this tiny fraction of the sky, the long exposure reveals about 5500 galaxies, some of them so distant that we see them when the Universe was less than 5% of its current age.
The Hubble eXtreme Deep Field image contains several of the most distant objects ever identified.
Credit:
NASA, ESA, G. Illingworth, D. Magee, and P. Oesch (University of California, Santa Cruz), R. Bouwens (Leiden University), and the HUDF09 Team

IMAGE 4….ALMA surveyed the Hubble Ultra Deep Field, uncovering new details of the star-forming history of the Universe. This close-up image reveals one such galaxy (orange), rich in carbon monoxide, showing it is primed for star formation. The blue features are galaxies imaged by Hubble.
This image is based on the very deep ALMA survey by Manuel Aravena, Fabian Walter and colleagues, covering about one sixth of the full HUDF area.
Credit:
B. Saxton (NRAO/AUI/NSF); ALMA (ESO/NAOJ/NRAO); NASA/ESA Hubble

IMAGE 5….A trove of galaxies, rich in carbon monoxide (indicating star-forming potential) were imaged by ALMA (orange) in the Hubble Ultra Deep Field. The blue features are galaxies imaged by Hubble.
This image is based on the very deep ALMA survey by Manuel Aravena, Fabian Walter and colleagues, covering about one sixth of the full HUDF area.
Credit:
B. Saxton (NRAO/AUI/NSF); ALMA (ESO/NAOJ/NRAO); NASA/ESA Hubble