milky-way-galaxy

Vela Supernova Remnant : The plane of our Milky Way Galaxy runs through this complex and beautiful skyscape. At the northwestern edge of the constellation Vela the telescopic frame is over 10 degrees wide, centered on the brightest glowing filaments of the Vela Supernova Remnant, an expanding debris cloud from the death explosion of a massive star. Light from the supernova explosion that created the Vela remnant reached Earth about 11,000 years ago. In addition to the shocked filaments of glowing gas, the cosmic catastrophe also left behind an incredibly dense, rotating stellar core, the Vela Pulsar. Some 800 light-years distant, the Vela remnant is likely embedded in a larger and older supernova remnant, the Gum Nebula via NASA

js
Neutron Stars Are Weird!

There, we came right out and said it. They can’t help it; it’s just what happens when you have a star that’s heavier than our sun but as small as a city. Neutron stars give us access to crazy conditions that we can’t study directly on Earth.

Here are five facts about neutron stars that show sometimes they are stranger than science fiction!

1. Neutron stars start their lives with a bang

When a star bigger and more massive than our sun runs out of fuel at the end of its life, its core collapses while the outer layers are blown off in a supernova explosion. What is left behind depends on the mass of the original star. If it’s roughly 7 to 19 times the mass of our sun, we are left with a neutron star. If it started with more than 20 times the mass of our sun, it becomes a black hole.

2. Neutron stars contain the densest material that we can directly observe

While neutron stars’ dark cousins, black holes, might get all the attention, neutron stars are actually the densest material that we can directly observe. Black holes are hidden by their event horizon, so we can’t see what’s going on inside. However, neutron stars don’t have such shielding. To get an idea of how dense they are, one sugar cube of neutron star material would weigh about 1 trillion kilograms (or 1 billion tons) on Earth—about as much as a mountain. That is what happens when you cram a star with up to twice the mass of our sun into a sphere the diameter of a city.

3. Neutron stars can spin as fast as blender blades

Some neutron stars, called pulsars, emit streams of light that we see as flashes because the beams of light sweep in and out of our vision as the star rotates. The fastest known pulsar, named PSR J1748-2446ad, spins 43,000 times every minute. That’s twice as fast as the typical household blender! Over weeks, months or longer, pulsars pulse with more accuracy than an atomic clock, which excites astronomers about the possible applications of measuring the timing of these pulses.

4. Neutron stars are the strongest known magnets

Like many objects in space, including Earth, neutron stars have a magnetic field. While all known neutron stars have magnetic fields billions and trillions of times stronger than Earth’s, a type of neutron star known as a magnetar can have a magnetic field another thousand times stronger. These intense magnetic forces can cause starquakes on the surface of a magnetar, rupturing the star’s crust and producing brilliant flashes of gamma rays so powerful that they have been known to travel thousands of light-years across our Milky Way galaxy, causing measurable changes to Earth’s upper atmosphere.

5. Neutron stars’ pulses were originally thought to be possible alien signals

Beep. Beep. Beep. The discovery of pulsars began with a mystery in 1967 when astronomers picked up very regular radio flashes but couldn’t figure out what was causing them. The early researchers toyed briefly with the idea that it could be a signal from an alien civilization, an explanation that was discarded but lingered in their nickname for the original object—LGM-1, a nod to the “little green men” (it was later renamed PSR B1919+21). Of course, now scientists understand that pulsars are spinning neutron stars sending out light across a broad range of wavelengths that we detect as very regular pulses – but the first detections threw observers for a loop.

The Neutron star Interior Composition Explorer (NICER) payload that is soon heading to the International Space Station will give astronomers more insight into neutron stars—helping us determine what is under the surface. Also, onboard NICER, the Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) experiment will test the use of pulsars as navigation beacons in space.

Want to learn even more about Neutron Stars? Watch this…

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

As night falls on Devils Tower National Monument, it transforms from a place of darkness into a place of wonder. Thousands of twinkling, glittering stars dot the night sky over an astounding geologic feature that protrudes out of the rolling prairie surrounding the Black Hills. Stay for nature’s night show at Wyoming’s Devils Tower – it’s worth it! Photo courtesy of David Kingham.

Peering deep into the heart of the Milky Way, this image shows a region of the sky in the constellation of Sagittarius. The two knots of stars you see are the globular clusters NGC 6522 (upper right) and NGC 6528 (lower left). There are over 200,000 stars in this image alone which covers a patch of sky just two-thirds as wide as the full moon.

The vastness of the cosmos is staggering.

Photo by Adam Block/Mount Lemmon SkyCenter/University of Arizona
Info Credit: Phil Plait, Bad Astronomy

PHOTO OF THE WEEK

 This week’s ‘Photo of the Week’ features a spectacular photo of the Milky Way over the grasslands of Estonia. Taken by the talented photographer Hendrik Mändla in Tarvastu, Estonia, this beautiful photo offers an interesting contrast between the green lushness of nature and the blinding red lights of a town visible on the right of the photo. The deep blues and purples of the Milky Way add depth to this photo and make a striking example of the differences between nature and civilization.
 For more amazing photos be sure to check out Hendrik’s Instagram @hendrik.mandla at https://www.instagram.com/hendrik.mandla/

In parts of Antarctica, not only is it winter, but the Sun can spend weeks below the horizon.At China's Zhongshan Station, people sometimes venture out into the cold to photograph a spectacular night sky.The featured image from one such outing was taken in mid-July, just before the end of this polar night.Pointing up, the wide angle lens captured not only the ground at the bottom, but at the top as well. In the foreground is a colleague also taking pictures.In the distance, a spherical satellite receiver and several windmills are visible.Numerous stars dot the night sky, including Sirius and Canopus.Far in the background, stretching overhead from horizon to horizon, is the central band of our Milky Way Galaxy.Even further in the distance, visible as extended smudges near the top, are the Large and Small Magellanic Clouds, satellite galaxies near our huge Milky Way Galaxy.

Credit: NASA

Time And Space

Meteors and Milky Way over Mount Ranier : Despite appearances, the sky is not falling. Two weeks ago, however, tiny bits of comet dust were. Featured here is the Perseids meteor shower as captured over Mt. Rainier, Washington, USA. The image was created from a two-hour time lapse video, snaring over 20 meteors, including one that brightened dramatically on the image left. Although each meteor train typically lasts less than a second, the camera was able to capture their color progressions as they disintegrated in the Earths atmosphere. Here an initial green tint may be indicative of small amounts of glowing magnesium atoms that were knocked off the meteor by atoms in the Earths atmosphere. To cap things off, the central band of our Milky Way Galaxy was simultaneously photographed rising straight up behind the snow-covered peak of Mt. Rainier. Another good meteor shower is expected in mid-November when debris from a different comet intersects Earth as the Leonids. via NASA

js

Galaxies from the Altiplano : The central bulge of our Milky Way Galaxy rises over the northern Chilean Atacama altiplano in this postcard from planet Earth. At an altitude of 4500 meters, the strange beauty of the desolate landscape could almost belong to another world though. Brownish red and yellow tinted sulfuric patches lie along the whitish salt flat beaches of the Salar de Aguas Calientes region. In the distance along the Argentina border is the stratovolcano Lastarria, its peak at 5700 meters . In the clear, dark sky above, stars, nebulae, and cosmic dust clouds in the Milky Way echo the colors of the altiplano at night. Extending the view across extragalactic space, the Large and Small Magellanic Clouds, satellite galaxies of the Milky Way, shine near the horizon through a faint greenish airglow. via NASA

js
instagram

Star trails over Nebraska

NGC 206 and the Star Clouds of Andromeda: The large stellar association cataloged as NGC 206 is nestled within the dusty arms of the neighboring Andromeda galaxy. Also known as M31, the spiral galaxy is a mere 2.5 million light-years away. NGC 206 is near top center in this gorgeous close-up of the southwestern extent of Andromedas disk, a remarkable composite of data from space and ground-based observatories. The bright, blue stars of NGC 206 indicate its youth. In fact, its youngest massive stars are less than 10 million years old. Much larger than the open or galactic clusters of young stars in the disk of our Milky Way galaxy, NGC 206 spans about 4,000 light-years. Thats comparable in size to the giant stellar nurseries NGC 604 in nearby spiral M33 and the Tarantula Nebula, in the Large Magellanic Cloud. Star forming sites within Andromeda are revealed by the telltale reddish emission from clouds of ionized hydrogen gas. via NASA

js
A bridge of stars connects two dwarf galaxies

The Magellanic Clouds, the two largest satellite galaxies of the Milky Way, appear to be connected by a bridge stretching across 43,000 light years, according to an international team of astronomers led by researchers from the University of Cambridge. The discovery is reported in the journal Monthly Notices of the Royal Astronomical Society (MNRAS) and is based on the Galactic stellar census being conducted by the European Space Observatory, Gaia.

For the past 15 years, scientists have been eagerly anticipating the data from Gaia. The first portion of information from the satellite was released three months ago and is freely accessible to everyone. This dataset of unprecedented quality is a catalogue of the positions and brightness of a billion stars in our Milky Way galaxy and its environs.

Keep reading

Night Hides the World : Stars come out as evening twilight fades in this serene skyscape following the Persian proverb Night hides the world, but reveals a universe. The scene finds the Sun setting over northern Kenya and the night will soon hide the shores of Lake Turkana, home to many Nile crocodiles. The region is also known for its abundance of hominid fossils. On that past November night, a brilliant Venus, then the worlds evening star, dominates the starry skies above. But also revealed are faint stars, cosmic dust clouds, and glowing nebulae along the graceful arc of our own Milky Way galaxy. via NASA

js

Nothing compares to staying up all night, watching the stars twinkle overhead. Derek Culver captured this amazing pic at Mount Rainier National Park in Washington. The lights on the mountain: A few climbers getting an early start to the summit under the Milky Way.  Photo courtesy of Derek Culver.

Did you ever notice that Sailor Moon Crystal did that?

Originally posted by duke-of-bretagne


Originally posted by eternal-sailormoon

By starting at the moon and zooming out to our galactic neighborhood, that’s how Sailor Moon begins her transformation.

I’m surprised nobody’s ever mentioned this. I thought it was fucking awesome!

Sailor Moon is the Guardian of Mystery, indeed. In fact, each Guardian/Senshi in Sailor Moon Crystal has a unique starting sequence that each look and ultimately mean something totally different.