medical-technology

  • things disney should do:reopen the wonders of life pavilion in epcot with several new attractions - an exhibit about the advancements in medical technology with baymax, an inside out feature about the voices in our heads, and a replica of adventure thru inner space.
  • what disney has done:not this

Diamonds are a neuron’s best friend

Diamonds may – or may not – be a girls’ best friend, but they are proving to be the ideal material for devices interfacing with the brain. Over the last decade, the chemical non-reactivity, stability, and lack of immunogenicity of diamond have marked it out as an ideal candidate for neural implants. Now researchers from the UK and Ireland have confirmed diamond’s credentials and devised a protocol for culturing neurons from stem cells on its surface [Nistor et al., Biomaterials 61 (2015) 139,http://dx.doi.org/10.1016/j.biomaterials.2015.04.050].

“Until now, the medical community have not really considered using diamond for implants,” explains Paul W. May of the University of Bristol, who worked with colleagues at Trinity College, Dublin and the University of Exeter on the study. “However, the last two decades has seen the emergence of chemical vapor deposition (CVD)… so diamond can now be considered an inexpensive engineering material.”

Although diamond’s extreme stiffness rules out use as an implant in moving parts of the body, its bio-inertness and ability to conduct electrically when doped are attractive for brain and nerve implants. Diamond is so bio-inert that the body does not recognize it is a foreign body, explains May, minimizing rejection and significantly reducing the build up of scar tissue around the implant. But what, the researchers wondered, happens when diamond is doped with boron to make it conductive? The team compared growth and survival of human neurons on undoped and boron-doped diamond and found no difference.

Read more.

Quick DNA Tests Crack Medical Mysteries Otherwise Missed

Researchers are developing a radical way to diagnose infectious diseases. Instead of guessing what a patient might have, and ordering one test after another, this new technology starts with no assumptions.

The technology starts with a sample of blood or spinal fluid from an infected person and searches through all the DNA in it, looking for sequences that came from a virus, a bacterium, a fungus or even a parasite.

Scientists at the University of California, San Francisco are reporting this week their first results from the technique, which relies on a technology calledNext Generation Sequencing.

One of their early patients is Andrea Struve, a 21-year-old San Franciscan who returned from 40 days in the Australian Outback last year with a nasty set of symptoms.

“I was in classes, sweating profusely with a fever and joint pain, and it just wasn’t fun, so that’s when I went to the doctor,” she says.

Her doctor made a bunch of educated guesses about the underlying cause, but all the tests came back negative. So physicians enrolled Struve in a study at UC San Francisco to try out a different approach.

“As opposed to the way we normally diagnose infectious disease — meaning we target a single infectious agent at a time — this test works by detecting all the DNA present in clinical samples,” says Dr. Charles Chiu, who is running the study.

Chiu extracted DNA from Struve’s blood and ran it through a superfast sequencing machine. He compared the DNA he found with a huge library of DNA sequences from all sorts of infectious agents. It turns out that she was infected with a virus related to chicken pox — one that normally causes a roseola rash in young children.

Continue reading.

Photo: Doctors used a rapid DNA test to identify a Wisconsin teen’s unusual infection with Leptospira bacteria (yellow), which are common in the tropics. (CDC/Rob Weyant)

A gravity-powered chip that can mimic a human heartbeat outside the body could advance pharmaceutical testing and open new possibilities in cell culture because it can mimic fundamental physical rhythms, according to the Univ. of Michigan researchers who developed it.  

Read More - http://www.rdmag.com/videos/2015/06/heartbeat-chip-could-improve-pharmaceutical-tests

UK Woman Gets “World’s Most Advanced” Bionic Hand Replacement

A new technology has enabled a woman who was born without a right hand to ride a bike for the first time, among other new abilities.

Steeper Group, which is based in Leeds, created the “BeBionic” small hand for Nicky Ashwell, a 26-year-old from London; the company claims it is the most “anatomically accurate” out there and offers an “unrivalled level of precision and natural movements”.

(Source)

CONTRIBUTE HERE

==

EVERYONE W/ A CAMERA: RECord yourself on camera answering these three specific questions RE: Future Technology: 

  1. How would you feel about the self-driving car? Would you feel out of control? Do you think it seems dangerous? Do you think it would reduce the death rate of car accidents? 

  2. How do you feel about the idea of brain chips? Does it sound fun or scary to you? 

  3. How do you feel about medical technology evolving to the point of making immortality a reality? Is the point of life that it’s finite?

Please Help!!!

As some of you know, my father left his job as a pediatrician so that he could create an application that makes it easier for doctors and patients to communicate and share information. It has been a really hectic year with trying to launch a business and my dad has spent nearly all his waking hours putting his heart into this project. unfortunately, doctors are reluctant to try it out- even for free. He’s nearly defeated and it breaks my heart…

Currently there is a huge medical conference/contest that could be the last big chance to turn the app around. The top 4 medical ideas are selected for a paid conference at Harvard! The catch is- to vote you must be a doctor or med student… if any of you ARE either, or know either, or would consider signal boosting this, I will be forever grateful!! 

https://medstro.com/posts/1036

Please share this with any med students and doctors, even if they don’t vote maybe they will like the idea and want to be involved!! 

http://www.zipede.com/

Thank you so much and best wishes- this means more to me than I can explain. I know it’s a really long shot to gain awareness through my art and plant blog, but the internet is surprising. 

sacramento.cbslocal.com
3-D Printers Help Grow New Jaws For Dogs At UC Davis

Previously, the doctors had to wait until they cut into the dog to form the titanium plate. But with UC Davis’ new 3-D printing facility, they can now print an exact replica of the dog’s skull ahead of time, allowing doctors to plan and cut down on anesthesia time in the operating room.<br/>

The future is here.

Cellular Adaptions to Stress

Stress. We all deal with it—whether it’s during finals week or during a rough day of work—it happens. Each and every single one of us has a way of coping with that stress (in a healthy manner, hopefully). But has anyone ever stopped to think about how our cells cope with stress? Probably not. Amazingly enough, our cells have their own ways of adapting to stress. The big important ones are:
• Hypertrophy
• Hyperplasia
• Atrophy
• Metaplasia

Hypertrophy
Hypertrophy is defined as an increase in the size of cells resulting in increase in the size of the organ. It is important to note that in this phenomenon, there is no new cells being formed, rather it is simply an increase in the size of the cells that are already there. These cells will increase their amount of structural proteins and organelles. Hypertrophy can be either physiologic or pathogenic (cause of disease). Hypertrophy is usually the result of increased demand (think of a uterus getting larger to bare a child) or by hormonal stimulation.

Hyperplasia
Hyperplasia is characterized by an increase number of cells due to cell proliferation. Hyperplasia occurs in cells that are (obviously) capable of cell replication. It can occur with hypertrophy, usually due to the response of the same stimuli. Like hypertrophy, hyperplasia can be either physiologic or pathologic (both due to hormonal stimuli). An example of physiologic hyperplasia would be the proliferation of female breast tissue during puberty. Here, the glandular epithelium is being exemplified by a hormonal stimuli. Another example of physiologic hyperplasia falls under the category of compensatory hyperplasia. This is where remaining tissue grows back after the removal of part of an organ. An example of pathologic hyperplasia would be a disease called endometrial hyperplasia. This is caused by uncontrolled estrogen stimulation, which leads to uncontrolled proliferation of the inner layer of the uterus. 


Atrophy
Atrophy is the shrinking in the size of the cell caused by the loss of the cells substance. It is important to note that atrophic cells diminished in function, but they are not necessarily dead. Causes of atrophy are immobilization (lack of use), loss of innervation, diminished blood supply, inadequate nutrition, lack of endocrine stimulation (such as in menopause), and aging. When the cell is faced with any of these obstacles, it reduces in size to a point where survival is still possible and reaches a new equilibrium. In the case of atrophy, protein synthesis is reduced due to the reduced metabolic activity of the cell. Some cellular proteins may diminish due to nutritional deficiencies and disuse. These two factors activate the ubiquitin-proteasome pathway, causing ubiquitin ligases to attach many copies of the ubiquitin peptide to our own cellular proteins, which then flags them for degradation in the proteasomes.  Atrophy can also be the result of increased autophagy. This is where there is an increased number of autophagic vacuoles in the cell, which then would promote the cell to eat its own components as a way to survive.

Metaplasia
Metaplasia is a reversible change in which one adult cell type is replaced by another cell type. in this cell adaption, a cell that is undergoing a lot of stress is replaced by a different type of cell that will better fit the environment. Scientist believe that metaplasia is caused by the reprogramming of stem cells to differentiate along a new pathway rather than the pathway of the already differentiated cells. Metaplasia is a double edged sword. Epithelial metaplasia, for example, is characterized by the squamous change that occurs in the respiratory epithelium of smokers. Normally, ciliated columnar that line the trachea and bronchi are replaced by stratified squamous epithelium. The stratified squamous epithelium may have a better chance of surviving the toxins that come from the cigarette smoke. This may seem like a good thing, but the protective mechanisms provided by the ciliated columnar epithelium are lost, such as mucous secretion and ciliary clearance. 


Source:Kumar, Abbas, Aster. Robbins, Basic  Pathology. 9th edition.

6

One of the most fascinating aspects of emerging medical technology is how close we’re coming to being able to map and understand an entire human organism in real time. The gifs above come from GE’s new Revolution CT Scanner, a technology that exists today. Imagine what will exist tomorrow. In coming years, we may be able to push past the mapping of blood flow to begin mapping interactions between neural synapses, the reactions that make up our consciousness, that determine the most fundamental aspects of who we are. And once we can map our consciousness in real time, what’s to prevent us from replicating it?

Cranquis Mail: Are "migraine apps" a headache for doctors?

(name withheld) asked:

Ok, you’re at your clinic and your new pt says, “I’ve had migraines for years, I’m so tired of them and OTC medicine that works half the time, I started a diary in my headache phone app to see just how frequently I actually get them in a month. Here, look.” Do you think, “She’s one ‘of those’,” or do you prefer the headache pt keeping track? I don’t add what I ate that day or my activity because my diet doesn’t vary much, I get them at home or work, my eyes are checked regularly and I get them wearing contacts, not wearing contacts, with glasses or without. And by “years” I mean I’m 30 now and I remember getting migraines as young as 10 years old - light sensitivity, nausea/vomiting, the whole bit. Every time I go to a clinic for something (colds/sore throats , yearly physicals) I add frequent headaches on my history sheet but it’s never brought up (I feel too terrible with the illness or it’s not appropriate for my obgyn to address). I plan on being seen just solely for the migraines/headaches and I want to show frequency. I don’t want to show a Dr my phone app diary if it just makes them think, “Oh, lord, here we go (internal eye rolls)”. Just looking for a Dr’s honest opinion on the best way to evaluate a new pt’s chief complaint. I don’t have a PCP.

Hi there, Headodynia (your Cranquis-Nym for future communiques re: this topic)

I personally would have NO problem if a patient brought in a symptom diary for their headaches or menstrual issues or GI symptoms or blood pressure or whatever! (Sure, I’m an Urgent Care doctor, so technically if your medical problem has been around long enough to require journaling, it’s probably something that should be managed by a primary doctor or a specialist – but, the concept of a patient actually collecting and organizing their relevant data before coming to talk to me about their long-standing medical problem? ME LIKEY!)

Keep reading