maven mission

What happened to Mars?

It’s likely that billions of years ago, Mars had entire oceans on its surface. Conditions were good for life to develop and at the time, it was even a more habitable planet than Earth.

So what happened?

Recently NASA revealed that they’d discovered liquid water still runs in small amounts on Mars, but its no more than an implication of what was and could’ve been. Today Mars is largely a barren planet which seems to be more tomb than home.

NASA’s MAVEN mission, luckily, was able to figure it out.

It turns out, Mars’ atmosphere (what little’s left) is being torn apart by something known as the “solar wind”. This is a stream of charged particles that explode out of the Sun into space. Little by little, these particles are able to rip off bits of Mars’ atmosphere. The rate this happens, as observed by MAVEN, matches up with the general era in which we think Mars’ atmosphere still flourished.

When a planet doesn’t have an atmosphere, the pressure and heat needed to keep water liquid is mostly gone. Some of the water evaporated into the remaining atmosphere (most of which was then stripped away into space) and some froze.

So why did this happen to Mars? Could it happen to Earth?

Yes and no. The reason why it happened to Mars is because it’s such a small planet. Smaller things cool down quicker. I challenge you to go get a large coffee and a small coffee and wait to see which one cools faster.

You see, Mars and Earth both have iron cores. When the planets formed out of molten conglomerates in space, these iron cores were hot, even after the outer crust of the planets cooled against the vacuum of space.

A rapidly spinning, molten iron core (for those physicists among us) already know: this is all you need to generate a magnetic field!

The Sun’s solar wind, as it happens, is subject to magnetism since it’s made up of charged particles. All you need, therefore, to protect yourself from the solar wind, is a magnetic field. The charged particles will be stopped by the field, travel up and down to the planet’s magnetic poles where they’ll discharge in a flash of light known as a borealis:

So there you have it: the Northern Lights killed Mars.

… well not really but it’s all connected in a wonderful, interesting way.

Earth is safe from such a fate so long as we can protect our atmosphere from the solar wind, and even then the stripping away of the atmosphere wouldn’t happen overnight.

(Image credit: NASA)


Mystery of Mars’ lost atmosphere solved at last, thanks to NASA’s Maven mission

“We also learned that the atmospheric loss was gradual, and took tens-to-hundreds of millions of years, meaning two important things:

1. If there was life on the surface of Mars early on, the atmospheric changes were gradual enough that we have reason to believe it could have evolved to find a suitable niche where it may survive even to the present day.
2. If we decided to terraform Mars by artificially creating a dense atmosphere, it would survive for many millions of years today before we needed to replenish it.”

If you came to the Solar System some 500 million years after its formation, you would’ve found two world with oceans of liquid water, continents and all the conditions we know of for life to begin thriving: Earth and Mars. But unlike our own world, Mars’ organic history was cut short when it lost its atmosphere and became a barren, desert wasteland. Thanks to the Maven mission, we now know how and when this happened!



New global images of Mars from the MAVEN mission show the ultraviolet glow from the Martian atmosphere in unprecedented detail, revealing dynamic, previously invisible behavior. They include the first images of “nightglow” that can be used to show how winds circulate at high altitudes. Additionally, dayside ultraviolet imagery from the spacecraft shows how ozone amounts change over the seasons and how afternoon clouds form over giant Martian volcanoes. The images were taken by the Imaging UltraViolet Spectrograph (IUVS) on the Mars Atmosphere and Volatile Evolution mission (MAVEN).

“MAVEN obtained hundreds of such images in recent months, giving some of the best high-resolution ultraviolet coverage of Mars ever obtained,” said Nick Schneider of the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder. Schneider is presenting these results at the American Astronomical Society’s Division for Planetary Sciences meeting in Pasadena, California, which is being held jointly with the European Planetary Science Congress.

Nightside images show ultraviolet (UV) “nightglow” emission from nitric oxide (abbreviated NO). Nightglow is a common planetary phenomenon in which the sky faintly glows even in the complete absence of external light. Mars’ nightside atmosphere emits light in the ultraviolet due to chemical reactions that start on Mars’ dayside. Ultraviolet light from the Sun breaks down molecules of carbon dioxide and nitrogen, and the resulting atoms are carried around the planet by high-altitude wind patterns that encircle the planet. On the nightside, these winds bring the atoms down to lower altitudes where nitrogen and oxygen atoms collide to form nitric oxide molecules. The recombination releases extra energy, which comes out as ultraviolet light.

Scientists predicted NO nightglow at Mars, and prior missions detected its presence, but MAVEN has returned the first images of this phenomenon in the Martian atmosphere. Splotches and streaks appearing in these images occur where NO recombination is enhanced by winds. Such concentrations are clear evidence of strong irregularities in Mars’ high altitude winds and circulation patterns. These winds control how Mars’ atmosphere responds to its very strong seasonal cycles. These first images will lead to an improved determination of the circulation patterns that control the behavior of the atmosphere from approximately 37 to 62 miles (about 60 to 100 kilometers) high.

Dayside images show the atmosphere and surface near Mars’ south pole in unprecedented ultraviolet detail. They were obtained as spring comes to the southern hemisphere. Ozone is destroyed when water vapor is present, so ozone accumulates in the winter polar region where the water vapor has frozen out of the atmosphere. The images show ozone lasting into spring, indicating that global winds are inhibiting the spread of water vapor from the rest of the planet into winter polar regions. Wave patterns in the images, revealed by UV absorption from ozone concentrations, are critical to understanding the wind patterns, giving scientists an additional means to study the chemistry and global circulation of the atmosphere.

MAVEN observations also show afternoon cloud formation over the four giant volcanoes on Mars, much as clouds form over mountain ranges on Earth. IUVS images of cloud formation are among the best ever taken showing the development of clouds throughout the day. Clouds are a key to understanding a planet’s energy balance and water vapor inventory, so these observations will be valuable in understanding the daily and seasonal behavior of the atmosphere.

“MAVEN’s elliptical orbit is just right,” said Justin Deighan of the University of Colorado, Boulder, who led the observations. “It rises high enough to take a global picture, but still orbits fast enough to get multiple views as Mars rotates over the course of a day.”

TOP IMAGE….MAVEN’s Imaging UltraViolet Spectrograph obtained these images of rapid cloud formation on Mars on July 9-10, 2016. The ultraviolet colors of the planet have been rendered in false color, to show what we would see with ultraviolet-sensitive eyes. The series interleaves MAVEN images to show about 7 hours of Mars rotation during this period, just over a quarter of Mars’ day. The left part of the planet is in morning and the right side is in afternoon. Mars’ prominent volcanoes, topped with white clouds, can be seen moving across the disk. Mars’ tallest volcano, Olympus Mons, appears as a prominent dark region near the top of the images, with a small white cloud at the summit that grows during the day. Olympus Mons appears dark because the volcano rises up above much of the hazy atmosphere which makes the rest of the planet appear lighter. Three more volcanoes appear in a diagonal row, with their cloud cover merging to span up to a thousand miles by the end of the day. These images are particularly interesting because they show how rapidly and extensively the clouds topping the volcanoes form in the afternoon. Similar processes occur at Earth, with the flow of winds over mountains creating clouds. Afternoon cloud formation is a common occurrence in the American West, especially during the summer.
Credits: NASA/MAVEN/University of Colorado

CENTRE IMAGE….MAVEN’s Imaging UltraViolet Spectrograph obtained images of rapid cloud formation on Mars on July 9-10, 2016. The ultraviolet colors of the planet have been rendered in false color, to show what we would see with ultraviolet-sensitive eyes. Mars’ tallest volcano, Olympus Mons, appears as a prominent dark region near the top of the image, with a small white cloud at the summit that grows during the day. Three more volcanoes appear in a diagonal row, with their cloud cover (white areas near center) merging to span up to a thousand miles by the end of the day.
Credits: NASA/MAVEN/University of Colorado

LOWER IMAGE….This image of the Mars night side shows ultraviolet emission from nitric oxide (abbreviated NO). The emission is shown in false color with black as low values, green as medium, and white as high. These emissions track the recombination of atomic nitrogen and oxygen produced on the dayside, and reveal the circulation patterns of the atmosphere. The splotches, streaks and other irregularities in the image are indications that atmospheric patterns are extremely variable on Mars’ nightside. The inset shows the viewing geometry on the planet. MAVEN’s Imaging UltraViolet Spectrograph obtained this image of Mars on May 4, 2016 during late winter in Mars Southern Hemisphere.
Credits: NASA/MAVEN/University of Colorado

BOTTOM IMAGE….This ultraviolet image near Mars’ South Pole was taken by MAVEN on July 10 2016 and shows the atmosphere and surface during southern spring. The ultraviolet colors of the planet have been rendered in false color, to show what we would see with ultraviolet-sensitive eyes. Darker regions show the planet’s rocky surface and brighter regions are due to clouds, dust and haze. The white region centered on the pole is frozen carbon dioxide (dry ice) on the surface. Pockets of ice are left inside craters as the polar cap recedes in the spring, giving its edge a rough appearance. High concentrations of atmospheric ozone appear magenta in color, and the wavy edge of the enhanced ozone region highlights wind patterns around the pole.
Credits: NASA/MAVEN/University of Colorado

NASA Mission Reveals Speed of Solar Wind Stripping Martian Atmosphere

NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) mission has identified the process that appears to have played a key role in the transition of the Martian climate from an early, warm and wet environment that might have supported surface life to the cold, arid planet Mars is today.

MAVEN data have enabled researchers to determine the rate at which the Martian atmosphere currently is losing gas to space via stripping by the solar wind. The findings reveal that the erosion of Mars’ atmosphere increases significantly during solar storms. The scientific results from the mission appear in the Nov. 5 issues of the journals Science and Geophysical Research Letters.

Keep reading