martian lake

Layers of meaning! These rocks show the deep and shallow waters of an ancient Martian lake could’ve supported different kinds of microbes. This evenly layered rock imaged in 2014 by my Mastcam shows a pattern typical of a lake-floor sedimentary deposit near where flowing water entered a lake. Shallow and deep parts of an ancient Martian lake left different clues in mudstone formed from lakebed deposits. Credit: @nasa/NASAJPL-Caltech/MSSS

Rover findings indicate stratified lake on ancient Mars

A long-lasting lake on ancient Mars provided stable environmental conditions that differed significantly from one part of the lake to another, according to a comprehensive look at findings from the first three-and-a-half years of NASA’s Curiosity rover mission. While previous work had revealed the presence of a lake more than three billion years ago in Mars’ Gale Crater, this study defines the lake’s chemical conditions and uses Curiosity’s powerful payload to determine that the lake was stratified.

Stratified bodies of water exhibit sharp chemical or physical differences between deep water and shallow water. In Gale’s lake, the shallow water was richer in oxidants than deeper water was.

Keep reading

4

These areas, all around Mount Sharp on Mars, show extremely clear signs of ancient river deltas.

The patterns in the rocks were created by a process called sedimentation where material was deposited and accumulate in layers. These pictures essentially show you “fossils” of ancient Martian lakes and rivers.

The Mars Curiosity Rover is currently investigating these different places and will be trying to determine what the conditions were during each place’s history.

5

Mars Rover Views Spectacular Layered Rock Formations

The layered geologic past of Mars is revealed in stunning detail in new color images returned by NASA’s Curiosity Mars rover, which is currently exploring the “Murray Buttes” region of lower Mount Sharp.

The new images arguably rival photos taken in U.S. National Parks.
Curiosity took the images with its Mast Camera (Mastcam) on Sept. 8.

The rover team plans to assemble several large, color mosaics from the multitude of images taken at this location in the near future.

“Curiosity’s science team has been just thrilled to go on this road trip through a bit of the American desert Southwest on Mars,” said Curiosity Project Scientist Ashwin Vasavada, of NASA’s Jet Propulsion Laboratory, Pasadena, California.

The Martian buttes and mesas rising above the surface are eroded remnants of ancient sandstone that originated when winds deposited sand after lower Mount Sharp had formed.

“Studying these buttes up close has given us a better understanding of ancient sand dunes that formed and were buried, chemically changed by groundwater, exhumed and eroded to form the landscape that we see today,” Vasavada said.

The new images represent Curiosity’s last stop in the Murray Buttes, where the rover has been driving for just over one month. As of this week, Curiosity has exited these buttes toward the south, driving up to the base of the final butte on its way out. In this location, the rover began its latest drilling campaign (on Sept. 9). After this drilling is completed, Curiosity will continue farther south and higher up Mount Sharp, leaving behind these spectacular formations.

Curiosity landed near Mount Sharp in 2012. It reached the base of the mountain in 2014 after successfully finding evidence on the surrounding plains that ancient Martian lakes offered conditions that would have been favorable for microbes if Mars has ever hosted life. Rock layers forming the base of Mount Sharp accumulated as sediment within ancient lakes billions of years ago.

On Mount Sharp, Curiosity is investigating how and when the habitable ancient conditions known from the mission’s earlier findings evolved into conditions drier and less favorable for life.

IMAGE 1….This view from the Mast Camera (Mastcam) in NASA’s Curiosity Mars rover shows an outcrop with finely layered rocks within the “Murray Buttes” region on lower Mount Sharp.
The buttes and mesas rising above the surface in this area are eroded remnants of ancient sandstone that originated when winds deposited sand after lower Mount Sharp had formed. Curiosity closely examined that layer – called the “Stimson formation” – during the first half of 2016, while crossing a feature called “Naukluft Plateau” between two exposures of the Murray formation. The layering within the sandstone is called “cross-bedding” and indicates that the sandstone was deposited by wind as migrating sand dunes.
The image was taken on Sept. 8, 2016, during the 1454th Martian day, or sol, of Curiosity’s work on Mars.


IMAGE 2….This view from the Mast Camera (Mastcam) in NASA’s Curiosity Mars rover shows a sloping hillside within the “Murray Buttes” region on lower Mount Sharp. The rim of Gale Crater, where the rover has been active since landing in 2012, is visible in the distance, through the dusty haze.
The image was taken on Sept. 8, 2016, during the 1454th Martian day, or sol, of Curiosity’s work on Mars.


IMAGE 3….This view from the Mast Camera (Mastcam) in NASA’s Curiosity Mars rover shows sloping buttes and layered outcrops within the “Murray Buttes” region on lower Mount Sharp.
The buttes and mesas rising above the surface are eroded remnants of ancient sandstone that originated when winds deposited sand after lower Mount Sharp had formed. Curiosity closely examined that layer – called the “Stimson formation” – during the first half of 2016, while crossing a feature called “Naukluft Plateau” between two exposures of the Murray formation. The layering within the sandstone is called “cross-bedding” and indicates that the sandstone was deposited by wind as migrating sand dunes.
The image was taken on Sept. 8, 2016, during the 1454th Martian day, or sol, of Curiosity’s work on Mars.


IMAGE 4….This view from the Mast Camera (Mastcam) in NASA’s Curiosity Mars rover shows finely layered rocks within the “Murray Buttes” region on lower Mount Sharp.
The buttes and mesas rising above the surface in this area are eroded remnants of ancient sandstone that originated when winds deposited sand after lower Mount Sharp had formed. Curiosity closely examined that layer – called the “Stimson formation” – during the first half of 2016, while crossing a feature called “Naukluft Plateau” between two exposures of the Murray formation. The layering within the sandstone is called “cross-bedding” and indicates that the sandstone was deposited by wind as migrating sand dunes.
The image was taken on Sept. 8, 2016, during the 1454th Martian day, or sol, of Curiosity’s work on Mars.


IMAGE 5….This view from the Mast Camera (Mastcam) in NASA’s Curiosity Mars rover shows a hillside outcrop with layered rocks within the “Murray Buttes” region on lower Mount Sharp.
The buttes and mesas rising above the surface in this area are eroded remnants of ancient sandstone that originated when winds deposited sand after lower Mount Sharp had formed. Curiosity closely examined that layer – called the “Stimson formation” – during the first half of 2016, while crossing a feature called “Naukluft Plateau” between two exposures of the Murray formation. The layering within the sandstone is called “cross-bedding” and indicates that the sandstone was deposited by wind as migrating sand dunes.
The image was taken on Sept. 8, 2016, during the 1454th Martian day, or sol, of Curiosity’s work on Mars.
Malin Space Science Systems, San Diego, built and operates the rover’s Mastcam. NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, manages the Mars Science Laboratory Project for NASA’s Science Mission Directorate, Washington. JPL designed and built the project’s Curiosity rover.

8

Mostly Mute Monday: Water On Mars

“These “gullies” that form are seen to be actively growing, and don’t come about from landslides, avalanches or dust flow. Instead, our orbiters teach us that the lineae have perchlorate salt deposits in them, evidence that liquid water dissolves them and flows there, sublimates/evaporates, and leaves them behind.”

It wasn’t merely one discovery that led to the announcement of liquid water on Mars, but a slew of pieces of evidence of a watery past, including dried-up riverbeds, sedimentary rock formations, martian spherules, frozen lakes and subsurface ice. Couple that with the recurring slope lineae – and the discovery that they grow and leave salt deposits behind – and you’ve got a planet with not only liquid water, but possibly the potential for life right now on the surface.

Mars rover views spectacular layered rock formations

The layered geologic past of Mars is revealed in stunning detail in new color images returned by NASA’s Curiosity Mars rover, which is currently exploring the “Murray Buttes” region of lower Mount Sharp. The new images arguably rival photos taken in U.S. National Parks.

Curiosity took the images with its Mast Camera (Mastcam) on Sept. 8. The rover team plans to assemble several large, color mosaics from the multitude of images taken at this location in the near future.

“Curiosity’s science team has been just thrilled to go on this road trip through a bit of the American desert Southwest on Mars,” said Curiosity Project Scientist Ashwin Vasavada, of NASA’s Jet Propulsion Laboratory, Pasadena, California.

Keep reading

2

Details Of A 3 Billion-Year-Old Martian Lake Emerge

NASA says its Curiosity rover has uncovered more details of a large lake that existed on Mars more than 3 billion years ago. The waterbody, which partially filled a crater near the planet’s equator called Gale, measured 96 miles in diameter and was fed by melting snow that flowed from its northern rim.

The Curiosity mission has also found evidence of streams, river deltas and filled and dried lakes around the crater that indicate the area went through multiple hydrologic cycles over millions of years.

Keep reading

VEINS ON MARS WERE FORMED BY EVAPORATING ANCIENT LAKES

** Synopsis: The Open University and University of Leicester publish study determining the fluids once present in Martian Yellowknife Bay, Gale Crater; Results provide evidence for long and varied history of water in Mars Gale Crater; Sulphur and iron rich groundwater in Gale Crater was habitable by Earth standards; Mudstones in Gale Crater close in composition to rocks in Watchet Bay in North Devon, highlighting a terrestrial analogue. **

Mineral veins found in Mars’s Gale Crater were formed by the evaporation of ancient Martian lakes, a new study has shown.

The research, by Mars Science Laboratory participating scientists at the Open University and the University of Leicester, used the Mars Curiosity rover to explore Yellowknife Bay in Gale Crater on Mars, examining the mineralogy of veins that were paths for groundwater in mudstones.

The study suggests that the veins formed as the sediments from the ancient lake were buried, heated to about 50 degrees Celsius and corroded.

Professor John Bridges from the University of Leicester Department of Physics and Astronomy said: “The taste of this Martian groundwater would be rather unpleasant, with about 20 times the content of sulphate and sodium than bottled mineral water for instance!

“However as Dr. Schwenzer from The Open University concludes, some microbes on Earth do like sulphur and iron rich fluids, because they can use those two elements to gain energy. Therefore, for the question of habitability at Gale Crater the taste of the water is very exciting news.”

The researchers suggest that evaporation of ancient lakes in the Yellowknife Bay would have led to the formation of silica and sulphate-rich deposits.

Subsequent dissolution by groundwater of these deposits – which the team predict are present in the Gale Crater sedimentary succession – led to the formation of pure sulphate veins within the Yellowknife Bay mudstone.

The study predicts the original precipitate was likely gypsum, which dehydrated during the lake’s burial.

The team compared the Gale Crater waters with fluids modeled for Martian meteorites shergottites, nakhlites and the ancient meteorite ALH 84001, as well as rocks analysed by the Mars Exploration rovers and with terrestrial ground and surface waters.

The aqueous solution present during sediment alteration associated with mineral vein formation at Gale Crater was found to be high in sodium, potassium and silicon, but had low magnesium, iron and aluminium concentrations and had a near neutral to alkaline pH level.

The mudstones with sulphate veins in the Gale Crater were also found to be close in composition to rocks in Watchet Bay in North Devon, highlighting a terrestrial analogue which supports the model of dissolution of a mixed silica and sulphate-rich shallow horizon to form pure sulphate veins.

Ashwin Vasavada, Curiosity Project Scientist from the NASA Jet Propulsion Laboratory said: “These result provide further evidence for the long and varied history of water in Gale Crater. Multiple generations of fluids, each with a unique chemistry, must have been present to account for what we find in the rock record today.”