Se la ami vai da lei. Chiamala ora, falle sapere il numero di volte che pensi a lei, cantale una canzone. Dedicale un film che la faccia ridere, mandale una lettera vuota, dille che può scriverci tutto quello che vuole sentirsi dire. Falle il solletico sulle guance, baciale i capelli, portala a fare un giro in un campo. Regalale un fiore. Regalale mille fiori, regalale un campo di fiori. Comprale un libro che nessuno ha mai letto. Prendile un cd che nessuno ha mai ascoltato. Fai qualsiasi cosa, ma non fartela sfuggire. L’amore non sta mai fermo troppo a lungo.
—  Francesco Roversi

anonymous asked:

Hola ¿puedes aconsejarme?, bueno me gusta un chico, pero el vive en otro estado y hace poco me dejo de hablar y no se porque, de verdad me gusta:(, ¿Que hago?

Mandale un mensaje expresandole como te sientes….puede que le siente bien y recapacite

We put together a thing for our one year anniversary. We’ve got friends, colleagues, and artists we look up to all contributing. Hit up our bandcamp to listen/download for freeeee!!! #FreeMusic #FurtherSkyRecords #AnalogSunset #Milkshakes #LosingSeason #StaircaseSpirits #HolyPinto #FrameAndMantle #TownsInTime #SleeperWave #FullerStreet #AllRiot #Mandals #Zanders #KnifeGarden #OnTheFritz

Made with Instagram

Çantamda beyaz bir mandal buldum ve nereden geldiği hakkında en ufak bir fikrim yok allam işaret gönderdiysen anlamıyorum şu an

A Recap of Some Important Ideas Regarding Mandalic Geometry

  1. Mandalic geometry (MG) is a new kind of mathematical methodology based on a worldview having roots that predate written history.
  2. It is a discrete geometry which currently consists of just a coordinate system but can be extended as Descartes did his to encompass an entire analytic geometry.
  3. Mandalic geometry introduces and is based on a new number system, the composite number system.
  4. Just as the complex number system combines real numbers and imaginary numbers and is more robust than either, the composite number system combines real numbers and probable numbers and is more robust than either.
  5. The composite number system is also more robust than the complex number system. Complex numbers combine real numbers with imaginary numbers to form the single complex plane. Composite numbers combine real numbers with probable numbers to form six interdependent composite planes.
  6. Axiomatic to the system is the contention that numbers can exist in different dimensions and therefore can be described as being of some particular dimension. Numbers are always viewed and treated within context of a stated dimension.
  7. Probable numbers are an extension of the real numbers to higher dimensions and are independent of imaginary and complex numbers.
  8. Mandalic geometry does not admit the existence of square root of -1 in the real world other than in mathematics invented by the human mind. In place of square root of negative numbers, MG introduces the new concept of contra-square root. In brief this involves substitution of a combination form of interactive two-dimensional analogues of +1 and -1 for -1 as currently used in imaginary number contexts. This is more fully explained elsewhere in the blog.
  9. Put another way, in place of imaginary numbers MG posits the existence of probable numbers. These can be considered the result of what is essentially wavelike interactions of higher dimensional numbers to form the real numbers we know in the 3-dimensional world.
  10. Higher dimensional numbers can interact with one another through wavelike constructive and destructive interference to generate ordinary
    3-dimensional numbers. Numbers are not viewed as constants to be acted upon as Descartes so views them but rather as being themselves active and changeable. They participate in process. This feature alone enables composite numbers to mediate between mathematics and physics better than either real or complex numbers can.
  11. The interactions of higher dimensional numbers in the process of dimensional compositing to yield 3-dimensional numbers is a function of time and therefore probabilistic from our limited ordinary point of view. From this perspective, certain probablity distributions are the result of dimensional compositing and the consequent mandalic form. MG considers the probabilistic nature of quantum mechanics likely to be based on such.
  12. The probabilistic nature in three dimensions of what are here called probable numbers is what gives rise to the mandalic form which can in a sense be considered the 3-dimensional evolution of 6-dimensional numbers from protean representations through progressive differentiation of form to the stage of maximal differentiation and back again to the undifferentiated state of greatest probability.
  13. The mandalic form has a geometric progression of its line structures in the three Euclidean/Cartesian dimensions such that series of numbers of the form 1:2:1, 2:4:2, and 4:8:4 occur throughout all of those dimensions when a hybrid 6D/3D coordinate system results from performing 2:1 compositing from six to three dimensions.
  14. Mandalic geometry views points and lines in three dimensions as convenient fictions that exist only as evanescent probabilistic concurrences of analogous entities in higher dimensions.
  15. The probabilistic nature of MG makes it ideal for investigations and descriptions of quantum mechanics.
  16. The exclusion of imaginary and complex numbers and substitution of probable and composite numbers which are easily reducible to ordinary algebraic/arithmetic forms and can be worked with using the same methods as those mathematical disciplines makes MG more utilitarian and appropriate to application to quantum mechanics than are complex numbers. All operations performed are based on simple inversion (reflection through a point) and on real numbers, maintaining all the usual rules and properties of ordinary arithmetic, including commutativity (which quaternions fail to preserve.)
  17. MG is currently based on discrete numbers and is concerned mainly with the positive and negative integers. Fractions and irrational numbers are not excluded from the system but do not currently play a significant role. Future incarnations of MG will extend it outward beyond the unit vector cube to tile the geometric universe and inward to encompass fractional entities and fractals.
  18. It is a hybrid geometry resulting from superposition of 6-dimensional numbers and 3-dimensional numbers and is fully commensurate with
    3-dimensional Cartesian geometry.
  19. It describes a linear mapping of two dimensions to one dimension which forms an algebra over the field of real numbers.
  20. The 2:1 compositing of dimension involved creates a new number system the members of which are like the real integers in all ways except that they map differently to a Cartesian geometric space. Whereas Decartes assumes that one number maps to one point, MG does not make this assumption which is just an unproved axiom that Descartes makes implicit use of.
  21. The method of dimensional compositing automatically results in a mandalic formation having a geometric progression through three Euclidean/Cartesian dimensions from periphery to center (origin).
  22. Currently MG is limited to a description of unit vectors in a composite hybrid 6D/3D geometry but can be extended to include all scalar values and any even number of dimensions.
  23. The notation system used is borrowed from Taoism and foreign to most Western mathematicians. It is, however, basically equivalent to Cartesian coordinate signs (yin=minus; yang=plus); ordered pairs (=bigrams); and ordered triads (=trigrams); and extends these concepts to include ordered quads (=tetragrams) and ordered sextuplets (=hexagrams).
  24. This notation system is used rather than the usual Cartesian notation because it is much easier for the mind to manipulate dimensional numbers using it. It takes only a little practice to become accustomed to using it. Without its use, understanding of mandalic geometry becomes extremely difficult, if not impossible.
  25. As MG views a point as a concurrence of various different dimensions, it interprets Cartesian ordered pairs and triads, and their extensions to higher dimensions, as tensors and treats them as such. This makes it possible to apply operations of addition and multiplication to these mathematical entities in a manner analogous to the way William Rowan Hamilton applied these operations to complex numbers by way of what he called “algebraic couples”.
  26. The probabilistic mandalic form that is the hallmark of MG conveys and necessitates a new interpretation of zero(0). In MG “zero” is not the empty null that it is in Cartesian geometry and Western mathematics generally, but rather a fount of being, so to speak, and a logic gate spanning dimensions. Wherever a zero occurs in Cartesian coordinates two Cartesian-equivalent forms are found in mandalic coordinates. So in the mandalic cube based on unit vectors the twelve edge centers, having a single Cartesian zero, have two Cartesian-equivalent forms (hexagrams); the six face centers, having two Cartesian zeros, have four Cartesian-equivalent forms; and the single cube center, the Cartesian origin point with three zeros, has eight Cartesian-equivalent forms.
  27. This alternative zero and the mandalic structure it inhabits force the creation of four different amplitudes of dimension in the 6-dimensional unit vector cube. These are not independent but all mutually dependent and holo-interactive within the composite 6D/3D coordinate system. All of this occurs in a context reminiscent of the one inhabited by nuclear particles. The mapping proposed by MG may in fact model the elementary force fields, electromagnetism and quantum chromodynamics. It suggests a possible mechanism for formation of the state of matter known as a quark-gluon plasma. Hidden within it may even be the secret of quantum gravity.

© 2016 Martin Hauser

Please note:  The content and/or format of this post may not be in finalized form. Reblog as a TEXT post will contain this caveat alerting readers to refer to the current version in the source blog. A LINK post will itself do the same. :)

Scroll to bottom for links to Previous / Next pages (if existent).  This blog builds on what came before so the best way to follow it is chronologically. Tumblr doesn’t make that easy to do. Since the most recent page is reckoned as Page 1 the number of the actual Page 1 continually changes as new posts are added.  To determine the number currently needed to locate Page 1 go to the most recent post which is here. The current total number of pages in the blog will be found at the bottom. The true Page 1 can be reached by changing the web address to, exchanging my current page number for x and entering.  To find a different true page(p) subtract p from x+1 to get the number(n) to use. Place n in the URL instead of x ( where
n = x + 1 - p. :)

-Page 312-