I pull her under the tree, behind the spruce branches, where the light makes patterns on our sunkissed faces. We sit knees bent, side to side. I feel distantly like it could be childish, but she doesn’t seem to care. I smile at her and she smiles back, and I adore her. I look down and suddenly I realize we’re still holding hands. I become serious, stroke the girl’s hand with my thumb and keep my eyes on it. Her eyes and her mouth.

New Outfits!

I’ve been working on a lot of new outfits for TBM lately and I’ve just finished up three more to show off to you all.

The Rave Kimono from The Sims 2: Nightlife has been re-textured in the new style and given its two additional recolors from Nightlife for the Medium and Dark skinned versions.

The other version of the Kimono (only available through cheat codes and only in the Wii versions) has been given three distinct patterns. The light skinned pattern comes from a Pre-Order pattern for The Sims 3 that was available through Target stores (which I never got even though I had the code but it expired because the game was delayed and by the time I could actually get the pattern the code was expired.) The medium skinned pattern is from the Magic Carpet essence and serves as a throwback to the green version of the Rave Kimono from the Wii version. And the dark skinned pattern uses the rose essence, because I thought it looked nice.

Finally is a completely brand new outfit for TBM. It’s based off an outfit worn by a woman in a render for the original The Sims: Vacation (On Holiday in the UK) but made into a more casual outfit. The light skinned version is the original Lavender and cream pants. The medium skinned version is based off the outfit Diane Pleasant wore in the original The Sims. And the Dark skinned version is based off a recolor of Diane Pleasant’s outfit in that was cut from the final game.

Also shown in the pictures are updated eye, mouth, and hair textures.

Views of Pluto

10 Images to Celebrate the Historic Exploration of the Pluto System

One year ago, our New Horizons mission made history by exploring Pluto and its moons – giving humankind our first close-up look at this fascinating world on the frontier of our solar system.

Since those amazing days in July 2015, the New Horizons spacecraft has transmitted numerous images and many other kinds of data home for scientists and the public alike to study, analyze, and just plain love. From Pluto’s iconic “heart” and sweeping ice-mountain vistas to its flowing glaciers and dramatic blue skies, it’s hard to pick just one favorite picture. So the mission team has picked 10 – and in no special order, placed them here.

Click the titles for more information about each image. You’ve seen nine of them before, and the team added a 10th favorite, also sure to become one of New Horizons’ “greatest hits.”

Vast Glacial Flows

In the northern region of Pluto’s Sputnik Planum, swirl-shaped patterns of light and dark suggest that a surface layer of exotic ices has flowed around obstacles and into depressions, much like glaciers on Earth.

Jagged Ice Shorelines and Snowy Pits

This dramatic image from our New Horizons spacecraft shows the dark, rugged highlands known as Krun Macula (lower right), which border a section of Pluto’s icy plains.

Blue Skies

Pluto’s haze layer shows its blue color in this picture taken by the New Horizons Ralph/Multispectral Visible Imaging Camera (MVIC). The high-altitude haze is thought to be similar in nature to that seen at Saturn’s moon Titan.

Charon Becomes a Real World

At half the diameter of Pluto, Charon is the largest satellite relative to its planet in the solar system. Many New Horizons scientists expected Charon to be a monotonous, crater-battered world; instead, they’re finding a landscape covered with mountains, canyons, landslides, surface-color variations and more. 

The Vistas of Pluto

Our New Horizons spacecraft looked back toward the sun and captured this near-sunset view of the rugged, icy mountains and flat ice plains extending to Pluto’s horizon. The backlighting highlights over a dozen layers of haze in Pluto’s tenuous but distended atmosphere.

The Dynamic Duo: Pluto and Charon in Enhanced Color

The color and brightness of both Pluto and Charon have been processed identically to allow direct comparison of their surface properties, and to highlight the similarity between Charon’s polar red terrain and Pluto’s equatorial red terrain. Pluto and Charon are shown with approximately correct relative sizes, but their true separation is not to scale. 

Strange Snakeskin Terrain

A moment’s study reveals surface features that appear to be texturally ‘snakeskin’-like, owing to their north-south oriented scaly raised relief. A digital elevation model created by the New Horizons’ geology shows that these bladed structures have typical relief of about 550 yards (500 meters). Their relative spacing of about 3-5 kilometers makes them some of the steepest features seen on Pluto.

Pluto’s Heart

This view is dominated by the large, bright feature informally named the “heart,” which measures approximately 1,000 miles (1,600 kilometers) across. The heart borders darker equatorial terrains, and the mottled terrain to its east (right) are complex. However, even at this resolution, much of the heart’s interior appears remarkably featureless—possibly a sign of ongoing geologic processes.

Far Away Snow-Capped Mountains

One of Pluto’s most identifiable features, Cthulhu (pronounced kuh-THU-lu) stretches nearly halfway around Pluto’s equator, starting from the west of the great nitrogen ice plains known as Sputnik Planum. Measuring approximately 1,850 miles (3,000 kilometers) long and 450 miles (750 kilometers) wide, Cthulhu is a bit larger than the state of Alaska.

Colorful Composition Maps of Pluto

The powerful instruments on New Horizons not only gave scientists insight on what Pluto looked like, their data also confirmed (or, in many cases, dispelled) their ideas of what Pluto was made of. These compositional maps – assembled using data from the Linear Etalon Imaging Spectral Array (LEISA) component of the Ralph instrument – indicate the regions rich in ices of methane (CH4), nitrogen (N2) and carbon monoxide (CO),  and, of course, water ice (H2O).

Make sure to follow us on Tumblr for your regular dose of space:


The light patterns on these glowing jellyfish are just amazing.