SpaceX Sends Super Science to Space Station!

SpaceX is scheduled to launch its Dragon spacecraft PACKED with super cool research and technology to the International Space Station June 1 from Kennedy Space Center in Florida. New solar panels, investigations that study neutron stars and even fruit flies are on the cargo list. Let’s take a look at what other bits of science are making their way to the orbiting laboratory 250 miles above the Earth…

New solar panels to test concept for more efficient power source

Solar panels generate power well, but they can be delicate and large when used to power a spacecraft or satellites. This technology demonstration is a solar panel concept that is lighter and stores more compactly for launch than the solar panels currently in use. 

Roll-Out Solar Array (ROSA) has solar cells on a flexible blanket and a framework that rolls out like a tape measure and snap into place, and could be used to power future space vehicles.  

Investigation to Study Composition of Neutron Stars

Neutron stars, the glowing cinders left behind when massive stars explode as supernovas, contain exotic states of matter that are impossible to replicate in any lab. NICER studies the makeup of these stars, and could provide new insight into their nature and super weird behavior.

Neutron stars emit X-ray radiation, enabling the NICER technology to observe and record information about its structure, dynamics and energetics. 

Experiment to Study Effect of New Drug on Bone Loss

When people and animals spend lots of space, they experience bone density loss. In-flight exercise can prevent it from getting worse, but there isn’t a therapy on Earth or in space that can restore bone that is already lost.

The Systemic Therapy of NELL-1 for osteoporosis (Rodent Research-5) investigation tests a new drug that can both rebuild bone and block further bone loss, improving health for crew members.

Research to Understand Cardiovascular Changes

Exposure to reduced gravity environments can result in cardiovascular changes such as fluid shifts, changes in total blood volume, heartbeat and heart rhythm irregularities, and diminished aerobic capacity.

The Fruit Fly Lab-02 study will use the fruit fly (Drosophila melanogaster) to better understand the underlying mechanisms responsible for the adverse effects of prolonged exposure to microgravity on the heart. Fruit flies are effective model organisms, and we don’t mean on the fashion runway. Want to see how 1,000 bottles of fruit flies were prepared to go to space? Check THIS out.

Space Life-Support Investigation

Currently, the life-support systems aboard the space station require special equipment to separate liquids and gases. This technology utilizes rotating and moving parts that, if broken or otherwise compromised, could cause contamination aboard the station. 

The Capillary Structures investigation studies a new method of water recycling and carbon dioxide removal using structures designed in specific shapes to manage fluid and gas mixtures. 

Earth-Observation Tools

Orbiting approximately 250 miles above the Earth’s surface, the space station provides pretty amazing views of the Earth. The Multiple User System for Earth Sensing (MUSES) facility hosts Earth-viewing instruments such as high-resolution digital cameras, hyperspectral imagers, and provides precision pointing and other accommodations.

This investigation can produce data that could be used for maritime domain awareness, agricultural awareness, food security, disaster response, air quality, oil and gas exploration and fire detection. 

Watch the launch live HERE! For all things space station science, follow @ISS_Research on Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

Sounding Rocket Science in the Arctic

We sent three suborbital sounding rockets right into the auroras above Alaska on the evening of March 1 local time from the Poker Flat Research Range north of Fairbanks, Alaska.  

Sounding rockets are suborbital rockets that fly up in an arc and immediately come back down, with a total flight time around 20 minutes. 

Though these rockets don’t fly fast enough to get into orbit around Earth, they still give us valuable information about the sun, space, and even Earth itself. Sounding rockets’ low-cost access to space is also ideal for testing instruments for future satellite missions.

Sounding rockets fly above most of Earth’s atmosphere, allowing them to see certain types of light – like extreme ultraviolet and X-rays – that don’t make it all the way to the ground because they are absorbed by the atmosphere. These kinds of light give us a unique view of the sun and processes in space.

The sun seen in extreme ultraviolet light by the Solar Dynamics Observatory satellite.

Of these three rockets, two were part of the Neutral Jets in Auroral Arcs mission, collecting data on winds influenced by the electric fields related to auroras. Sounding rockets are the perfect vehicle for this type of study, since they can fly directly through auroras – which exist in a region of Earth’s upper atmosphere too high for scientific balloons, but too low for satellites.

The third rocket that launched on March 1 was part of the ISINGLASS mission (short for Ionospheric Structuring: In Situ and Ground-based Low Altitude Studies). ISINGLASS included two rockets designed to launch into two different types of auroras in order to collect detailed data on their structure, with the hope of better understanding the processes that create auroras. The initial ISINGLASS rocket launched a few weeks earlier, on Feb. 22, also from the Poker Flat Research Range in Alaska.

Auroras are caused when charged particles trapped in Earth’s vast magnetic field are sent raining down into the atmosphere, usually triggered by events on the sun that propagate out into space. 

Team members at the range had to wait until conditions were just right until they could launch – including winds, weather, and science conditions. Since these rockets were studying aurora, that means they had to wait until the sky was lit up with the Northern Lights.

Regions near the North and South Pole are best for studying the aurora, because the shape of Earth’s magnetic field naturally funnels aurora-causing particles near the poles. 

But launching sensitive instruments near the Arctic Circle in the winter has its own unique challenges. For example, rockets have to be insulated with foam or blankets every time they’re taken outside – including while on the launch pad – because of the extremely low temperatures.

For more information on sounding rockets, visit www.nasa.gov/soundingrockets.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

Soaring through the skies! This view looks from the window of our F-18 support aircraft during a 2016 Orbital ATK air-launch of its Pegasus rocket. 

The CYGNSS mission, led by the University of Michigan, will use eight micro-satellite observatories to measure wind speeds over Earth’s oceans, increasing the ability of scientists to understand and predict hurricanes. 

CYGNSS launched at 8:37 a.m. EST on Thursday, Dec. 15, 2016 from our Kennedy Space Center in Florida. CYGNSS launched aboard an Orbital ATK Pegasus XL rocket, deployed from Orbital’s “Stargazer” L-1011 carrier aircraft.

Pegasus is a winged, three-stage solid propellant rocket that can launch a satellite into low Earth orbit. How does it work? Great question!

After takeoff, the aircraft (which looks like a commercial airplane..but with some special quirks) flies to about 39,000 feet over the ocean and releases the rocket. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

10

   ドラゴンボール  

.。.:*・° |  孫 悟空 x チチ  | .。.:*・°

Few Son Goku x Chi-Chi related merchandises from Japan since 1989 till 2017. 

This is just a sneak preview, there are more Goku x Chi-Chi stuff out there, though its not easy to get them cuz they were released long time ago, some of them are limited edition release. (I wouldn’t have even known about most of them if my older siblings hadn’t shown them to me!)

Also, the number of couple and family related mercandise is very less, like only 5%. The rest 95% is hot aliens either in fighting poses or ‘beating the crap out of each other’ pics. So, that makes these kind of pics very rare.

And the only way to get them now is through ebay or auction pages…where they ask too high prices 😓

Also, main reason I made these posts because of stupid messages like this - here.
Take a Virtual Tour of NASA

Welcome to NASA! Today, we’re taking you behind-the-scenes for a virtual tour looking at our cutting-edge work and humanity’s destiny in deep space!

Starting at 1:30 p.m., we will host a series of Facebook Live events from each of our 10 field centers across the country. Take a look at where we’ll be taking you…

Glenn Research Center
1:30 p.m. EDT

Our Glenn Research Center in Cleveland, OH will host a tour of its Electric Propulsion Lab. This lab is where we test solar propulsion technologies that are critical to powering spacecraft for our deep-space missions. The Electric Propulsion Laboratory houses two huge vacuum chambers that simulate the space environment.

Marshall Space Flight Center
1:50 p.m. EDT

Our Marshall Space Flight Center in Huntsville, AL will host a tour from a Marshall test stand where structural loads testing is performed on parts of our Space Launch System rocket. Once built, this will be the world’s most powerful rocket and will launch humans farther into space than ever before.

Stennis Space Center
2:10 p.m. EDT

Our Stennis Space Center in Bay St. Louis, MS will take viewers on a tour of their test stands to learn about rocket engine testing from their Test Control Center.

Armstrong Flight Research Center
2:30 p.m. EDT 

Our Armstrong Flight Research Center in Edwards, CA will host a tour from their aircraft hangar and Simulator Lab where viewers can learn about our X-Planes program. What’s an X-Plane? They are a variety of flight demonstration vehicles that are used to test advanced technologies and revolutionary designs.

Johnson Space Center
2:50 p.m. EDT

Our Johnson Space Center in Houston, TX will take viewers on a virtual exploration trip through the mockups of the International Space Station and inside our deep-space exploration vehicle, the Orion spacecraft!

Ames Research Center
3:10 p.m. EDT

Our Ames Research Center in California’s Silicon Valley will bring viewers into its Arc Jet Facility, a plasma wind tunnel used to simulate the extreme heat of spacecraft atmospheric entry.

Kennedy Space Center
3:30 p.m. EDT

Our Kennedy Space Center in Florida will bring viewers inside the Vehicle Assembly Building to learn about how we’re preparing for the first launch of America’s next big rocket, the Space Launch System (SLS) rocket.

Langley Research Center
3:50 p.m. EDT

Our Langley Research Center in Hampton, Virginia will bring viewers inside its 14-by-22-foot wind tunnel, where aerodynamic projects are tested.

Goddard Space Flight Center
4:10 p.m. EDT

Our Goddard Space Flight Center in Greenbelt, MD will discuss the upcoming United States total solar eclipse and host its tour from the Space Weather Lab, a large multi-screen room where data from the sun is analyzed and studied.

Jet Propulsion Laboratory
4:30 p.m. EDT

Our Jet Propulsion Laboratory in Pasadena, CA will bring viewers to the Spacecraft Assembly Facility to learn about robotic exploration of the solar system.

So, make sure to join us for all or part of our virtual tour today, starting at 1:30 p.m. EDT! Discover more about the work we’re doing at NASA and be sure to ask your questions in the comment section of each Facebook Live event! 

Additional details and viewing information available HERE

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com