large magellanic

30 Doradus, located in the heart of the Tarantula nebula, is the brightest star-forming region in our galactic neighborhood. The nebula resides 170,000 light-years away in the Large Magellanic Cloud. Links to very large images in comments.

js

SN 1987A

This artist’s impression of the material around a recently exploded star, known as Supernova 1987A (or SN 1987A), is based on observations which have for the first time revealed a three dimensional view of the distribution of the expelled material. The observations were made by astronomers using ESO’s Very Large Telescope. The original blast was not only powerful, according to the new results. It was also more concentrated in one particular direction.This is a strong indication that the supernova must have been very turbulent, supporting the most recent computer models. This image shows the different elements present in SN 1987A: two outer rings, one inner ring and the deformed, innermost expelled material.

Just how a supernova explodes is not very well understood, but the way the star exploded is imprinted on this inner material. The astronomers could deduce that this material was not ejected symmetrically in all directions, but rather seems to have had a preferred direction. Besides, this direction is different to what was expected from the position of the rings.

Image credit: ESO / L. Calçada

What created this gigantic hole? The emission nebula N44 in our neighboring galaxy the Large Magellanic Cloud has a large, 250 light-year hole and astronomers are trying to figure out why. One possibility is particle winds expelled by massive stars in the bubble’s interior that are pushing out the glowing gas. This answer was found to be inconsistent with measured wind velocities. Another possibility is that the expanding shells of old supernovas have sculpted the unusual space cavern. An unexpected clue of hot X-ray emitting gas was recently been detected escaping the N44 superbubble. The featured image was taken in three very specific colors by the huge 8-meter Gemini South Telescope. 

Image Credit & Copyright: Gemini Obs., AURA, NSF

instagram

Wispy remains of a supernova explosion hide a possible ‘survivor.’ Of all the varieties of exploding stars, the ones called Type Ia are perhaps the most intriguing. Their predictable brightness lets astronomers measure the expansion of the universe, which led to the discovery of dark energy. Yet the cause of these supernovae remains a mystery. Do they happen when two white dwarf stars collide? Or does a single white dwarf gorge on gases stolen from a companion star until bursting? If the second theory is true, the normal star should survive. Astronomers used the Hubble Space Telescope to search the gauzy remains of a Type Ia supernova in a neighboring galaxy called the Large Magellanic Cloud. They found a sun-like star that showed signs of being associated with the supernova. Further investigations will be needed to learn if this star is truly the culprit behind a white dwarf’s fiery demise.

 This supernova remnant is located 160,000 light-years from Earth. The actual supernova remnant is the irregular shaped dust cloud, at the upper center of the image. The gas in the lower half of the image and the dense concentration of stars in the lower left are the outskirts of a star cluster.

Image credit: NASA, ESA and H.-Y. Chu (Academia Sinica, Taipei)

instagram

Explore the darkness around Wellington, New Zealand - great galactic shots in here including the Magellanic Clouds

Star Cluster R136 Bursts Out : In the center of star-forming region 30 Doradus lies a huge cluster containing some of the largest, hottest, and most massive stars known. These stars, known collectively as star cluster R136, were captured in the featured image in visible light by the Wide Field Camera 3 in 2009 peering through the Hubble Space Telescope. Gas and dust clouds in 30 Doradus, also known as the Tarantula Nebula, have been sculpted into elongated shapes by powerful winds and ultraviolet radiation from these hot cluster stars. The 30 Doradus Nebula lies within a neighboring galaxy known as the Large Magellanic Cloud and is located a mere 170,000 light-years away. via NASA

js
Flying Observatory Has Big Plans for New Zealand

Our flying observatory, called SOFIA, carries a 100-inch telescope inside a Boeing 747SP aircraft. Scientists onboard study the life cycle of stars, planets (including the atmospheres of Pluto and Jupiter), nearby planetary systems, galaxies, black holes and complex molecules in space.

Flying South

Usually based in California, SOFIA and its team are returning to the Southern Hemisphere to study objects that aren’t visible from the Northern Hemisphere and to take advantage of the long winter nights. The team operates from Christchurch, New Zealand, regularly between June and August and continues with more big plans for this year.

Working with New Horizons 

Our SOFIA and New Horizons teams are working together again, to learn more about the next object that the New Horizons spacecraft will fly past, Kuiper Belt Object 2014 MU69, or MU69. This will be the farthest object ever encountered by any spacecraft, but little is known about it. Our team on SOFIA will be searching for possible debris around MU69 that could damage the spacecraft and will measure its size, helping the New Horizons team plan their next flyby.

How We Study Distant Celestial Objects from Earth

Our SOFIA team will study MU69 on July 10, 2017, well before New Horizons arrives in January 2019. We can study this distant object from Earth by flying in the faint shadow that it will cast on Earth’s surface as it passes in front of a star. SOFIA will fly directly into the center of this shadow as it moves across the Pacific Ocean. From inside the shadow, the team onboard will study how the light from the star changes as MU69 passes in front it, allowing them to measure its size and to establish if there are any rings or debris around it. The observations will work in the same way that we studied Pluto using SOFIA two weeks before New Horizon’s Pluto Flyby in 2015.

Observing Other Galaxies

The Magellanic Clouds are neighboring galaxies to our own Milky Way Galaxy. We’re studying how stars are forming in the Large and Small Magellanic clouds to compare those processes to star formation in our own galaxy. The Magellanic Clouds are best observed from the southern hemisphere.

And Supernova 1987A

Inside the Large Magellanic Cloud is Supernova 1987A, the closest supernova explosion witnessed in almost 400 years. Our team onboard SOFIA will continue studying this supernova to better understand the material expanding out from it, which may become the building blocks of future stars and planets. Many of our telescopes have studied Supernova 1987A, including the Hubble Space Telescope, the Chandra X-ray Observatory and SOFIA’s predecessor, the Kuiper Airborne Observatory, but the instruments on SOFIA are the only tools we can use to study the debris around it at infrared wavelengths, to better understand characteristics of the dust that cannot be measured using other wavelengths of light.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

3

Airglow above European Southern Observatory (ESO)

Here are gorgeous fulldome views above different telescopes of ESO’s La Silla Observatory in northern Chile. The red and green hues are produced by airglow, waves of alternating air pressure which are caused by various processes in the upper atmosphere. The Large and Small Magellanic Clouds are also visible while Milky Way cuts across the sky.

Credit: P. Horálek/ESO

The Tarantula Nebula : The Tarantula Nebula is more than a thousand light-years in diameter, a giant star forming region within nearby satellite galaxy the Large Magellanic Cloud, about 180 thousand light-years away. The largest, most violent star forming region known in the whole Local Group of galaxies, the cosmic arachnid sprawls across this spectacular composite view constructed with space- and ground-based image data. Within the Tarantula , intense radiation, stellar winds and supernova shocks from the central young cluster of massive stars, cataloged as R136, energize the nebular glow and shape the spidery filaments. Around the Tarantula are other star forming regions with young star clusters, filaments, and blown-out bubble-shaped clouds In fact, the frame includes the site of the closest supernova in modern times, SN 1987A, at the lower right. The rich field of view spans about 1 degree or 2 full moons, in the southern constellation Dorado. But were the Tarantula Nebula closer, say 1,500 light-years distant like the local star forming Orion Nebula, it would take up half the sky. via NASA

js
vimeo

After chasing it for more than two years I was finally rewarded with two displays of Aurora Australis (Southern lights) within a week visible from Mornington peninsula, not far from Melbourne. The nights were warm an clear and the Moon was not in the sky either - I could not have asked for better conditions.
The red color of this aurora is caused by the charged particles from the Sun exciting oxygen atoms high in the Earth’s atmosphere. …
Being able to photograph it all night I came up with a nice video. The brighter Aurora happened on January 22nd and the smaller one, featured in the middle section, was from January 16th, followed by a rather bright Moonrise.