jpl caltech

Swirling bands of light and dark clouds on Jupiter are seen in this image made by citizen scientists using data from our Juno spacecraft. Each of the alternating light and dark atmospheric bands in this image is wider than Earth, and each rages around Jupiter at hundreds of miles (km) per hour. The lighter areas are regions where gas is rising, and the darker bands are regions where gas is sinking. This image was acquired on May 19, 2017 from about 20,800 miles (33,400km) above Jupiter’s cloud tops.

Learn more

Credits: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt /Seán Doran

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

2

A small, faint star relatively close by is home to seven Earth-size planets with conditions that could be right for liquid water and maybe even life.

The discovery sets a record for both the most Earth-size planets and the most potentially habitable planets ever discovered around a single star.

The strange planetary system is quite compact, with all of these worlds orbiting their star closer than Mercury orbits the sun, according to a newly published report in Nature.

“If you were on the surface of one of these planets, you would see the other ones as we see the moon, or a bit smaller,” says Michaël Gillon, an astronomer at the University of Liège in Belgium. “The view would be very impressive.”

Astronomers Find 7 Earth-Size Planets Around A Nearby Star

Images: NASA/JPL-Caltech

2

NEW MYSTERIES SURROUND NEW HORIZONS’ NEXT FLYBY TARGET

NASA’s New Horizons spacecraft doesn’t zoom past its next science target until New Year’s Day 2019, but the Kuiper Belt object, known as 2014 MU69, is already revealing surprises.

Scientists have been sifting through data gathered from observing the object’s quick pass in front of a star – an astronomical event known as an occultation – on June 3. More than 50 mission team members and collaborators set up telescopes across South Africa and Argentina, along a predicted track of the narrow shadow of MU69 that the occultation would create on Earth’s surface, aiming to catch a two-second glimpse of the object’s shadow as it raced across the Earth. Accomplishing the observations of that occultation was made possible with the help of NASA’s Hubble Space Telescope and Gaia, a space observatory of the European Space Agency (ESA).

Combined, the pre-positioned mobile telescopes captured more than 100,000 images of the occultation star that can be used to assess the environment around this Kuiper Belt object (KBO). While MU69 itself eluded direct detection, the June 3 data provided valuable and unexpected insights that have already helped New Horizons.

“These data show that MU69 might not be as dark or as large as some expected,” said occultation team leader Marc Buie, a New Horizons science team member from Southwest Research Institute (SwRI) in Boulder, Colorado.

Initial estimates of MU69’s diameter, based primarily on data taken by the Hubble Space Telescope since the KBO’s discovery in 2014, fall in the 12-25-mile (20-40-kilometer) range – though data from this summer’s ground-based occultation observations might imply it’s at or even below the smallest sizes expected before the June 3 occultation.

Besides MU69’s size, the readings offer details on other aspects of the Kuiper Belt object.

“These results are telling us something really interesting,” said New Horizons Principal Investigator Alan Stern, of SwRI. “The fact that we accomplished the occultation observations from every planned observing site but didn’t detect the object itself likely means that either MU69 is highly reflective and smaller than some expected, or it may be a binary or even a swarm of smaller bodies left from the time when the planets in our solar system formed.”

More data are on the way, with additional occultations of MU69 occurring on July 10 and July 17. On July 10, NASA’s airborne Stratospheric Observatory for Infrared Astronomy (SOFIA) will use its powerful 100-inch (2.5-meter) telescope to probe the space around MU69 for debris that might present a hazard to New Horizons as it flies by in 18 months.

On July 17, the Hubble Space Telescope also will check for debris around MU69, while team members set up another ground-based “fence line” of small mobile telescopes along the predicted ground track of the occultation shadow in southern Argentina to try to better constrain, or even determine, the size of MU69.

Some 40 light-years from Earth, a planet called TRAPPIST-1e offers a heart-stopping view: brilliant objects in a red sky, looming like larger and smaller versions of our own moon. But these are no moons. They are other Earth-sized planets in a spectacular planetary system outside our own. These seven rocky worlds huddle around their small, dim, red star, like a family around a campfire. Any of them could harbor liquid water, but the planet shown here, fourth from the TRAPPIST-1 star, is in the habitable zone, the area around the star where liquid water is most likely to be detected. This system was revealed by the TRansiting Planets and PlanetIsmals Small Telescope (TRAPPIST) and NASA’s Spitzer Space Telescope. The planets are also excellent targets for NASA’s James Webb Space Telescope. Take a planet-hopping excursion through the TRAPPIST-1 system.

Dark Spot and Jovian ‘Galaxy’ - This enhanced-color image of a mysterious dark spot on Jupiter seems to reveal a Jovian “galaxy” of swirling storms. Juno acquired this JunoCam image on Feb. 2, 2017, at an altitude of 9,000 miles (14,500 kilometers) above the giant planet’s cloud tops. This publicly selected target was simply titled “Dark Spot.” In ground-based images it was difficult to tell that it is a dark storm. Citizen scientist Roman Tkachenko enhanced the color to bring out the rich detail in the storm and surrounding clouds. Just south of the dark storm is a bright, oval-shaped storm with high, bright, white clouds, reminiscent of a swirling galaxy. As a final touch, he rotated the image 90 degrees, turning the picture into a work of art.

Credits: NASA/JPL-Caltech/SwRI/MSSS/Roman Tkachenko

Calm lakes on Titan could mean smooth landing for future space probes

The lakes of liquid methane on Saturn’s moon, Titan, are perfect for paddling but not for surfing. New research led by The University of Texas at Austin has found that most waves on Titan’s lakes reach only about 1 centimeter high, a finding that indicates a serene environment that could be good news for future probes sent to the surface of that moon.

“There’s a lot of interest in one day sending probes to the lakes, and when that’s done, you want to have a safe landing, and you don’t want a lot of wind,” said lead author Cyril Grima, a research associate at the University of Texas Institute for Geophysics (UTIG). “Our study shows that because the waves aren’t very high, the winds are likely low.”

The research was published in the journal Earth and Planetary Science Letters on June 29. Collaborators include researchers at Cornell University, NASA’s Jet Propulsion Laboratory and The Johns Hopkins University Applied Physics Laboratory. UTIG is a research unit of the UT Jackson School of Geosciences.

Titan is the largest moon of Saturn and one of the locations in the solar system that is thought to possess the ingredients for life. In photos taken by the Cassini orbiter, a NASA probe, it appears as a smooth brown orb because of its thick atmosphere clouded with gaseous nitrogen and hydrocarbons. However, radar images from the same probe show that it has a surface crust made of water ice and drenched in liquid hydrocarbons. On Titan, methane and ethane fall from the sky as rain, fill deep lakes that dot the surface, and are possibly spewed into the air by icy volcanoes called cryovolcanoes.

“The atmosphere of Titan is very complex, and it does synthesize complex organic molecules–the bricks of life,” Grima said. “It may act as a laboratory of sorts, where you can see how basic molecules can be transformed into more complex molecules that could eventually lead to life.”

On top of that, it’s also thought to have an ocean of liquid water beneath its icy crust.

As a graduate student at the Université Grenoble Alpes in France, and then a postdoctoral fellow at UTIG, Grima developed a technique for measuring surface roughness in minute detail from radar data. Called radar statistical reconnaissance, the technique has been used to measure the snow density and its surface roughness in Antarctica and the Arctic, and to assist the landing site selection of NASA’s Mars lander InSight, which is scheduled to launch next year. Researchers at NASA’s Jet Propulsion Laboratory suggested he apply the technique to measuring Titan’s waves.

The research zeroes in on the three largest lakes in Titan’s northern hemisphere: Kraken Mare, Ligeia Mare and Punga Mare. Kraken Mare, the largest of the three, is estimated to be larger than the Caspian Sea. By analyzing radar data collected by Cassini during Titan’s early summer season, Grima and his team found that waves across these lakes are diminutive, reaching only about 1 centimeter high and 20 centimeters long.

“Cyril’s work is an independent measure of sea roughness and helps to constrain the size and nature of any wind waves,” said co-author Alex Hayes, an assistant professor of astronomy at Cornell University. “From the results, it looks like we are right near the threshold for wave generation, where patches of the sea are smooth and patches are rough.”

The results call into question the early summer’s classification as the beginning of the Titan’s windy season, Grima said, because high winds probably would have made for larger waves.

Information on Titan’s climate is essential for sending a probe safely to the surface. Although there are no formal plans for a mission, Grima says that there are plenty of concepts being developed by researchers around the world. The study indicates that if a future mission lands in early summer, there’s a good chance that it is in for a smooth landing.

This image shows Jupiter’s south pole, as seen by NASA’s Juno spacecraft from an altitude of 32,000 miles (52,000 kilometers). The oval features are cyclones, up to 600 miles (1,000 kilometers) in diameter. Multiple images taken with the JunoCam instrument on three separate orbits were combined to show all areas in daylight, enhanced color, and stereographic projection.

Credits: NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles

NASA SELECTS MISSION TO STUDY THE CHURNING CHAOS IN OUR MILKY WAY & BEYOND

NASA has selected a science mission that will measure emissions from the interstellar medium, which is the cosmic material found between stars. This data will help scientists determine the life cycle of interstellar gas in our Milky Way galaxy, witness the formation and destruction of star-forming clouds, and understand the dynamics and gas flow in the vicinity of the center of our galaxy.

The Galactic/Extragalactic ULDB Spectroscopic Terahertz Observatory (GUSTO) mission, led by principal investigator of the University of Arizona, Christopher Walker, will fly an ultralong-duration balloon (ULDB) carrying a telescope with carbon, oxygen and nitrogen emission line detectors. This unique combination of data will provide the spectral and spatial resolution information needed for Walker and his team to untangle the complexities of the interstellar medium, and map out large sections of the plane of our Milky Way galaxy and the nearby galaxy known as the Large Magellanic Cloud.

“GUSTO will provide the first complete study of all phases of the stellar life cycle, from the formation of molecular clouds, through star birth and evolution, to the formation of gas clouds and the re-initiation of the cycle,” said Paul Hertz, astrophysics division director in the Science Mission Directorate in Washington. “NASA has a great history of launching observatories in the Astrophysics Explorers Program with new and unique observational capabilities. GUSTO continues that tradition.”

The mission is targeted for launch in 2021 from McMurdo, Antarctica, and is expected to stay in the air between 100 to 170 days, depending on weather conditions. It will cost approximately $40 million, including the balloon launch funding and the cost of post-launch operations and data analysis.

The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, is providing the mission operations, and the balloon platform where the instruments are mounted, known as the gondola. The University of Arizona in Tucson will provide the GUSTO telescope and instrument, which will incorporate detector technologies from NASA’s Jet Propulsion Laboratory in Pasadena, California, the Massachusetts Institute of Technology in Cambridge, Arizona State University in Tempe, and SRON Netherlands Institute for Space Research.

NASA’s Astrophysics Explorers Program requested proposals for mission of opportunity investigations in September 2014. A panel of NASA and other scientists and engineers reviewed two mission of opportunity concept studies selected from the eight proposals submitted at that time, and NASA has determined that GUSTO has the best potential for excellent science return with a feasible development plan.



Illusions in the Cosmic Clouds: Pareidolia is the psychological phenomenon where people see recognizable shapes in clouds, rock formations, or otherwise unrelated objects or data. There are many examples of this phenomenon on Earth and in space.

When an image from NASAs Chandra X-ray Observatory of PSR B1509-58 a spinning neutron star surrounded by a cloud of energetic particles was released in 2009, it quickly gained attention because many saw a hand-like structure in the X-ray emission.

In a new image of the system, X-rays from Chandra in gold are seen along with infrared data from NASAs Wide-field Infrared Survey Explorer telescope in red, green and blue. Pareidolia may strike again as some people report seeing a shape of a face in WISEs infrared data. What do you see?

NASAs Nuclear Spectroscopic Telescope Array, or NuSTAR, also took a picture of the neutron star nebula in 2014, using higher-energy X-rays than Chandra.

PSR B1509-58 is about 17,000 light-years from Earth.

JPL, a division of the California Institute of Technology in Pasadena, manages the WISE mission for NASA. NASAs Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandras science and flight operations.

Image Credit: X-ray: NASA/CXC/SAO; Infrared: NASA/JPL-Caltech

js
Solar System: Things to Know This Week

With only four months left in the mission, Cassini is busy at Saturn. The upcoming cargo launch, anniversaries and more!

As our Cassini spacecraft made its first-ever dive through the gap between Saturn and its rings on April 26, 2017, one of its imaging cameras took a series of rapid-fire images that were used to make this movie sequence. Credits: NASA/JPL-Caltech/Space Science Institute/Hampton University

1-3. The Grand Finale

Our Cassini spacecraft has begun its final mission at Saturn. Some dates to note:

  • May 28, 2017: Cassini makes its riskiest ring crossing as it ventures deeper into Saturn’s innermost ring (D ring).
  • June 29, 2017: On this day in 2004, the Cassini orbiter and its travel companion the European Space Agency’s Huygens probe arrived at Saturn.
  • September 15, 2017: In a final, spectacular dive, Cassini will plunge into Saturn - beaming science data about Saturn’s atmosphere back to Earth to the last second. It’s all over at 5:08 a.m. PDT.

4. Cargo Launch to the International Space Station

June 1, 2017: Target date of the cargo launch. The uncrewed Dragon spacecraft will launch on a Falcon 9 from Launch Complex 39A at our Kennedy Space Center in Florida. The payload includes NICER, an instrument to measure neutron stars, and ROSA, a Roll-Out Solar Array that will test a new solar panel that rolls open in space like a party favor.

5. Sojourner

July 4, 2017: Twenty years ago, a wagon-sized rover named Sojourner blazed the trail for future Mars explorers - both robots and, one day, humans. Take a trip back in time to the vintage Mars Pathfinder websites:

6. Voyager

August 20, 2017: Forty years and still going strong, our twin Voyagers mark 40 years since they left Earth.

7. Total Solar Eclipse

August 21, 2017: All of North America will be treated to a rare celestial event: a total solar eclipse. The path of totality runs from Oregon to South Carolina.

8. From Science Fiction to Science Fact

Light a candle for the man who took rocketry from science fiction to science fact. On this day in 1882, Robert H. Goddard was born in Worcester, Massachusetts.

9. Looking at the Moon

October 28, 2017: Howl (or look) at the moon with the rest of the world. It’s time for the annual International Observe the Moon Night.

10. Last Human on the Moon

December 13, 2017: Forty-five years ago, Apollo 17 astronaut Gene Cernan left the last human footprint on the moon.

Discover more lists of 10 things to know about our solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

Some intriguing exoplanets

An exoplanet or extrasolar planet is a planet that orbits a star other than the Sun. The first scientific detection of an exoplanet was in 1988. However, the first confirmed detection came in 1992; since then, and as of 1 April 2017, there have been 3,607 exoplanets discovered in 2,701 planetary systems and 610 multiple planetary systems confirmed.

1- Kepler-186f

was the first rocky planet to be found within the habitable zone – the region around the host star where the temperature is right for liquid water. This planet is also very close in size to Earth. Even though we may not find out what’s going on at the surface of this planet anytime soon, it’s a strong reminder of why new technologies are being developed that will enable scientists to get a closer look at distant worlds.

2- CoRoT 7b

The first super-Earth identified as a rocky exoplanet, this planet proved that worlds like the Earth were indeed possible and that the search for potentially habitable worlds (rocky planets in the habitable zone) might be fruitful.

3- Kepler-22b  

A planet in the habitable zone and a possible water-world planet unlike any seen in our solar system.

4- Kepler 10-b

Kepler’s first rocky planet discovery is a scorched, Earth-size world that scientists believe may have a lava ocean on its surface.

5- 55 Cancri e

55 Cancri e is a toasty world that rushes around its star every 18 hours. It orbits so closely – about 25 times closer than Mercury is to our sun – that it is tidally locked with one face forever blisters under the heat of its sun. The planet is proposed to have a rocky core surrounded by a layer of water in a “supercritical” state, where it is both liquid and gas, and then the whole planet is thought to be topped by a blanket of steam.

6- 51 Pegasi b

This giant planet, which is about half the mass of Jupiter and orbits its star every four days, was the first confirmed exoplanet around a sun-like star, a discovery that launched a whole new field of exploration.

7- Kepler-444 system

The oldest known planetary system has five terrestrial-sized planets, all in orbital resonance. This weird group showed that solar systems have formed and lived in our galaxy for nearly its entire existence.

8- PSR B1257+12 system

Discovered in 1992 and 1994, the planets that orbit pulsar PSR B1257+12 are not only the smallest planetary bodies known to exist outside our solar system, they also orbit a neutron star. These weird “pulsar planets” demonstrated that planets exist in all environments in the galaxy – even around the remnants of an exploded star.

9- HD 80606 b  

This world has the most eccentric orbit, and as one scientist put it, “wears its heart on its sleeve,” with storms, rotation, atmospheric heating, and a crazy orbit all plainly visible.

10- OGLE-2005-BLG-390

Considered to be the first cold super Earth, this exoplanet began to form a Jupiter-like core of rock and ice, but couldn’t grow fast enough in size. Its final mass is five times that of Earth. The planet’s nickname is Hoth, after a planet from Star War

Credits: NASA / JPL-Caltech

Cosmic ‘Winter’ Wonderland

Although there are no seasons in space, this cosmic vista invokes thoughts of a frosty winter landscape. It is, in fact, a region called NGC 6357 where radiation from hot, young stars is energizing the cooler gas in the cloud that surrounds them. 

Located in our galaxy about 5,500 light years from Earth, NGC 6357 is actually a “cluster of clusters,” containing at least three clusters of young stars, including many hot, massive, luminous stars. The X-rays from Chandra and ROSAT reveal hundreds of point sources, which are the young stars in NGC 6357, as well as diffuse X-ray emission from hot gas. There are bubbles, or cavities, that have been created by radiation and material blowing away from the surfaces of massive stars, plus supernova explosions.

Credit: X-ray: NASA/CXC/PSU/L. Townsley et al; Optical: UKIRT; Infrared: NASA/JPL-Caltech

3

CHANDRA PEERS INTO A NURTURING CLOUD

In the context of space, the term ‘cloud’ can mean something rather different from the fluffy white collections of water in the sky or a way to store data or process information. Giant molecular clouds are vast cosmic objects, composed primarily of hydrogen molecules and helium atoms, where new stars and planets are born. These clouds can contain more mass than a million Suns, and stretch across hundreds of light-years.

The giant molecular cloud known as W51 is one of the closest to Earth at a distance of about 17,000 light-years. Because of its relative proximity, W51 provides astronomers with an excellent opportunity to study how stars are forming in our Milky Way galaxy.

A new composite image of W51 shows the high-energy output from this stellar nursery, where X-rays from Chandra are colored blue. In about 20 hours of Chandra exposure time, over 600 young stars were detected as point-like X-ray sources, and diffuse X-ray emission from interstellar gas with a temperature of a million degrees or more was also observed. Infrared light observed with NASA’s Spitzer Space Telescope appears orange and yellow-green and shows cool gas and stars surrounded by disks of cool material.

W51 contains multiple clusters of young stars. The Chandra data show that the X-ray sources in the field are found in small clumps, with a clear concentration of more than 100 sources in the central cluster, called G49.5-0.4 (pan over the image to find this source.)

Although the W51 giant molecular cloud fills the entire field-of-view of this image, there are large areas where Chandra does not detect any diffuse, low energy X-rays from hot interstellar gas. Presumably dense regions of cooler material have displaced this hot gas or blocked X-rays from it.

One of the massive stars in W51 is a bright X-ray source that is surrounded by a concentration of much fainter X-ray sources, as shown in a close-up view of the Chandra image. This suggests that massive stars can form nearly in isolation, with just a few lower mass stars rather than the full set of hundreds that are expected in typical star clusters.

Another young, massive cluster located near the center of W51 hosts a star system that produces an extraordinarily large fraction of the highest energy X-rays detected by Chandra from W51. Theories for X-ray emission from massive single stars can’t explain this mystery, so it likely requires the close interaction of two very young, massive stars. Such intense, energetic radiation must change the chemistry of the molecules surrounding the star system, presenting a hostile environment for planet formation.

TOP IMAGE….COMPOSITE
CENTRE IMAGE….X RAY
BOTTOM IMAGE….INFRARED