inflationary period

Chronology of the Universe.

The Big Bang
10-43 seconds

The universe begins with a cataclysm that generates space and time, as well as all the matter and energy the universe will ever hold. For an incomprehensibly small fraction of a second, the universe is an infinitely dense, hot fireball. The prevailing theory describes a peculiar form of energy that can suddenly push out the fabric of space. At 10-35 to 10-33 seconds a runaway process called “Inflation” causes a vast expansion of space filled with this energy. The inflationary period is stopped only when this energy is transformed into matter and energy as we know it.

The Universe Takes Shape
10-6 seconds

After inflation, one millionth of a second after the Big Bang, the universe continues to expand but not nearly so quickly. As it expands, it becomes less dense and cools. The most basic forces in nature become distinct: first gravity, then the strong force, which holds nuclei of atoms together, followed by the weak and electromagnetic forces. By the first second, the universe is made up of fundamental particles and energy: quarks, electrons, photons, neutrinos and less familiar types. These particles smash together to form protons and neutrons.

Formation of Basic Elements
3 seconds

Protons and neutrons come together to form the nuclei of simple elements: hydrogen, helium and lithium. It will take another 300,000 years for electrons to be captured into orbits around these nuclei to form stable atoms.

The Radiation Era
10,000 years

The first major era in the history of the universe is one in which most of the energy is in the form of radiation – different wavelengths of light, X rays, radio waves and ultraviolet rays. This energy is the remnant of the primordial fireball, and as the universe expands, the waves of radiation are stretched and diluted until today, they make up the faint glow of microwaves which bathe the entire universe.

Beginning the Era of Matter Domination
300,000 years

At this moment, the energy in matter and the energy in radiation are equal. But as the relentless expansion continues, the waves of light are stretched to lower and lower energy, while the matter travels onward largely unaffected. At about this time, neutral atoms are formed as electrons link up with hydrogen and helium nuclei. The microwave background radiation hails from this moment, and thus gives us a direct picture of how matter was distributed at this early time.

Birth of Stars and Galaxies
300 million years

Gravity amplifies slight irregularities in the density of the primordial gas. Even as the universe continues to expand rapidly, pockets of gas become more and more dense. Stars ignite within these pockets, and groups of stars become the earliest galaxies. This point is still perhaps 12 to 15 billion years before the present.

The Stellar Era Ends
100 Trillion Years in the Future

Astronomers assume that the universe will gradually wither away, provided it keeps on expanding and does not recollapse under the pull of its own gravity. During the Stelliferous Era, from 10,000 years to 100 trillion years after the Big Bang, most of the energy generated by the universe is in the form of stars burning hydrogen and other elements in their cores.

The Degenerate Era
100 Trillion to 10^37 Years in the Future

This era extends to Ten Trillion Trillion Trillion years after the Big Bang. Most of the mass that we can currently see in the universe is locked up in degenerate stars, those that have blown up and collapsed into black holes and neutron stars, or have withered into white dwarfs. Energy in this era is generated through proton decay and particle annihilation.

The Black Hole Era
10^38 to 10^100 Years in the Future

This era extends to Ten Thousand Trillion Trillion Trillion Trillion Trillion Trillion Trillion Trillion years after the Big Bang.  After the epoch of proton decay, the only stellar-like objects remaining are black holes of widely disparate masses, which are actively evaporating during this era.

The Dark Era
Times Later than 10^100 Years in the Future

At this late time, protons have decayed and black holes have evaporated.Only the waste products from these processes remain: mostly photons of colossal wavelength, neutrinos, electrons, and positrons. For all intents and purposes, the universe as we know it has dissipated.