health science center

anonymous asked:

ok so I saw that post about the price of med school, and what is it in us term? Cause yeah it's a bit expensive in france but it's alright compared to some other private schools that can go to 6k/7k a year...

bruh, $459 is a walk in the park, even 7k is considered nice by american standards im assuming the 7k is in euro but its not all that different when converted anyhow

doing a quick search and the cheapest med school i was able to find in the US is the UNT health and science center at 13k, nearly twice your highest amount (and if youre from out of state the cost rises to 28k) and our cheapest private med school is the baylor college of medicine at 30k, 4 times higher.

the average price of med schools in the US is 49k. our highest price seems to be columbia university at 57k a year

our community colleges dont even cost $459, the US average is 3k.
Canadian Doctor At Sunnybrook In Toronto First In World To Break Blood-Brain Barrier, Successfully Treat Brain Tumor [Updated: Video]
The blood-brain barrier has been broken for the first time in history. Doctor Todd Mainprize, of the Sunnybrook Health Sciences Centre in Toronto, and in

Medical researchers have long sought an answer to bypassing the blood-brain barrier, a layer of tightly packed cells that surrounds each of the blood vessels of the brain.

While this barrier helps protect the vessels from toxins and infections, it also prevents doctors from effectively treating brain diseases and tumors in patients.

A team of scientists at the Sunnybrook Health Sciences Center in Canada, however, have developed a non-invasive way to circumvent the blood-brain barrier in order to deliver much-needed drugs into the brain that could better treat diseases such as Parkinson’s and Alzheimer’s.

The breakthrough procedure makes use of focused ultrasound and microbubbles to bypass the protective layer around the brain’s blood vessels, and according to the researchers, it has already produced positive results in their clinical trials on animals.

The Sunnybrook scientists are now conducting tests in applying the new method on human patients.



Michel de Nostredame (depending on the source, 14 or 21 December 1503 – 2 July 1566), usually Latinised as Nostradamus, was a French apothecary and reputed seer who published collections of prophecies that have since become famous worldwide. He is best known for his book Les Propheties, the first edition of which appeared in 1555 (second picture: Copy of Garencières’ 1672 English translation of the Prophecies, located in The P.I. Nixon Medical History Library of The University of Texas Health Science Center at San Antonio.). Since the publication of this book, which has rarely been out of print since his death, Nostradamus has attracted a following that, along with much of the popular press, credits him with predicting many major world events. Most academic sources maintain that the associations made between world events and Nostradamus’s quatrains are largely the result of misinterpretations or mistranslations (sometimes deliberate) or else are so tenuous as to render them useless as evidence of any genuine predictive power. Nevertheless, occasional commentators have successfully used a process of free interpretation and determined “twisting” of his words to predict an apparently imminent event. For example, in 1867 (three years before it happened), Le Pelletier did so to anticipate either the triumph or the defeat of Napoleon III in a war that, in the event, begged to be identified as the Franco-Prussian War, while admitting that he could not specify either which or when.


What if everyone searched before belief? | Joshua Willms | TEDxTexasTechUniversity

Joshua examines the challenges of belief. He discusses differences in worldview that are faced in culture and the journey to discover one’s personal set of beliefs by decision, not by default.

Joshua Willms is an M.D./Ph.D. student at Texas Tech University Health Sciences Center, and aspires to a career in medicine and neuroscience. He received a B.S. in biology and a B.A. in classics from Texas Tech University in 2014 and completed an Honors Thesis in philosophy on the fine-tuning of physics for abiogenesis.

Willms has three years of research experience in marine biology, and two years of research experience in plant ecology. This wide base has allowed Willms an appreciation for seeing the world from multiple vantage points.
Respite centers offer a way to avoid mental health crisis and the hospital
N.Y. program is an attempt to cut down on treatment costs and keep lives under control.

TLDR version: NYC opens residential clinics where you talk to a counselor but are free to come and go.  Food and housing is provided.  Stay is one week, up to three times a year.  a referral from mental health professional is required.

The goal being to give people a breather where they can speak with counselor, get away from stress in life, have their basic needs tends to, and sort out issues before they have a full blown crisis and land in more intensive care.

Small DNA modifications predict brain's threat response

The tiny addition of a chemical mark atop a gene that is well known for its involvement in clinical depression and posttraumatic stress disorder can affect the way a person’s brain responds to threats, according to a new study by Duke University researchers.

The results, which appear online August 3 in Nature Neuroscience, go beyond genetics to help explain why some individuals may be more vulnerable than others to stress and stress-related psychiatric disorders.

The study focused on the serotonin transporter, a molecule that regulates the amount of serotonin signaling between brain cells and is a major target for treatment of depression and mood disorders. In the 1990s, scientists discovered that differences in the DNA sequence of the serotonin transporter gene seemed to give some individuals exaggerated responses to stress, including the development of depression.

(Image caption: An artist’s conception shows how molecules called methyl groups attach to a specific stretch of DNA, changing expression of the serotonin transporter gene in a way that ultimately shapes individual differences in the brain’s reactivity to threat. The methyl groups in this diagram are overlaid on the amygdala of the brain, where threat perception occurs. Credit: Annchen Knodt, Duke University)

Sitting on top of the serotonin transporter’s DNA (and studding the entire genome), are chemical marks called methyl groups that help regulate where and when a gene is active, or expressed. DNA methylation is one form of epigenetic modification being studied by scientists trying to understand how the same genetic code can produce so many different cells and tissues as well as differences between individuals as closely related as twins.

In looking for methylation differences, “we decided to start with the serotonin transporter because we know a lot about it biologically, pharmacologically, behaviorally, and it’s one of the best characterized genes in neuroscience,” said senior author Ahmad Hariri, a professor of psychology and neuroscience and member of the Duke Institute for Brain Sciences.

“If we’re going to make claims about the importance of epigenetics in the human brain, we wanted to start with a gene that we have a fairly good understanding of,” Hariri said.

This work is part of the ongoing Duke Neurogenetics Study (DNS), a comprehensive study linking genes, brain activity and other biological markers to risk for mental illness in young adults.

The group performed non-invasive brain imaging in the first 80 college-aged participants of the DNS, showing them pictures of angry or fearful faces and watching the responses of a deep brain region called the amygdala, which helps shape our behavioral and biological responses to threat and stress.

The team also measured the amount of methylation on serotonin transporter DNA isolated from the participants’ saliva, in collaboration with Karestan Koenen at Columbia University’s Mailman School of Public Health in New York.

The greater the methylation of an individual’s serotonin transporter gene, the greater the reactivity of the amygdala, the study found. Increased amygdala reactivity may in turn contribute to an exaggerated stress response and vulnerability to stress-related disorders.

To the group’s surprise, even small methylation variations between individuals were sufficient to create differences between individuals’ amygdala reactivity, said lead author Yuliya Nikolova, a graduate student in Hariri’s group. The amount of methylation was a better predictor of amygdala activity than DNA sequence variation, which had previously been associated with risk for depression and anxiety.

The team was excited about the discovery but also cautious, Hariri said, because there have been many findings in genetics that were never replicated.

That’s why they jumped at the chance to look for the same pattern in a different set of participants, this time in the Teen Alcohol Outcomes Study (TAOS) at the University of Texas Health Science Center at San Antonio.

Working with TAOS director, Douglas Williamson, the group again measured amygdala reactivity to angry and fearful faces as well as methylation of the serotonin transporter gene isolated from blood in 96 adolescents between 11 and 15 years old. The analyses revealed an even stronger link between methylation and amygdala reactivity.

“Now over 10 percent of the differences in amygdala function mapped onto these small differences in methylation,” Hariri said. The DNS study had found just under 7 percent.

Taking the study one step further, the group also analyzed patterns of methylation in the brains of dead people in collaboration with Etienne Sibille at the University of Pittsburgh, now at the Centre for Addiction and Mental Health in Toronto.

Once again, they saw that methylation of a single spot in the serotonin transporter gene was associated with lower levels of serotonin transporter expression in the amygdala.

“That’s when we thought, ‘Alright, this is pretty awesome,’” Hariri said.

Hariri said the work reveals a compelling mechanistic link: Higher methylation is generally associated with less reading of the gene, and that’s what they saw. He said methylation dampens expression of the gene, which then affects amygdala reactivity, presumably by altering serotonin signaling.

The researchers would now like to see how methylation of this specific bit of DNA affects the brain. In particular, this region of the gene might serve as a landing place for cellular machinery that binds to the DNA and reads it, Nikolova said.

The group also plans to look at methylation patterns of other genes in the serotonin system that may contribute to the brain’s response to threatening stimuli.

The fact that serotonin transporter methylation patterns were similar in saliva, blood and brain also suggests that these patterns may be passed down through generations rather than acquired by individuals based on their own experiences.

Hariri said he hopes that other researchers looking for biomarkers of mental illness will begin to consider methylation above and beyond DNA sequence-based variation and across different tissues.

Scientists slow brain tumor growth in mice

Much like using dimmer switches to brighten or darken rooms, biochemists have identified a protein that can be used to slow down or speed up the growth of brain tumors in mice.

Brain and other nervous system cancers are expected to claim 14,320 lives in the United States this year.

The results of the preclinical study led by Eric J. Wagner, Ph.D., and Ann-Bin Shyu, Ph.D., of The University of Texas Health Science Center at Houston (UTHealth) and Wei Li, Ph.D., of Baylor College of Medicine appear in the Advance Online Publication of the journal Nature.

“Our work could lead to the development of a novel therapeutic target that might slow down tumor progression,” said Wagner, assistant professor in the Department of Biochemistry and Molecular Biology at the UTHealth Medical School.

Shyu, professor and holder of the Jesse H. Jones Chair in Molecular Biology at the UTHealth Medical School, added, “This link to brain tumors wasn’t previously known.”

“Its role in brain tumor progression was first found through big data computational analysis, then followed by animal-based testing. This is an unusual model for biomedical research, but is certainly more powerful, and may lead to the discovery of more drug targets,” said Li, an associate professor in the Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology at Baylor. 

Wagner, Shyu, Li and their colleagues discovered a way to slow tumor growth in a mouse model of brain cancer by altering the process by which genes are converted into proteins.

Appropriately called messenger RNA for short, these molecules take the information inside genes and use it to make body tissues. While it was known that the messenger RNA molecules associated with the cancerous cells were shorter than those with healthy cells, the mechanism by which this occurred was not understood.

The research team discovered that a protein called CFIm25 is critical to keeping messenger RNA long in healthy cells and that its reduction promotes tumor growth. The key research finding in this study was that restoring CFIm25 levels in brain tumors dramatically reduced their growth.

“Understanding how messenger RNA length is regulated will allow researchers to begin to develop new strategies aimed at interfering with the process that causes unusual messenger RNA shortening during the formation of tumors,” Wagner said.

Additional preclinical tests are needed before the strategy can be evaluated in humans.

“The work described in the Nature paper by Drs. Wagner and Shyu stems from a high-risk/high-impact Cancer Prevention & Research Institute of Texas (CPRIT) proposal they submitted together and received several years ago,” said Rod Kellems, Ph.D., professor and chairman of the Department of Biochemistry and Molecular Biology at the UTHealth Medical School.

“Their research is of fundamental biological importance in that it seeks to understand the role of messenger RNA length regulation in gene expression,” Kellems said.  “Using a sophisticated combination of biochemistry, genetics and bioinformatics, their research uncovered an important role for a specific protein that is linked to glioblastoma tumor suppression.”

When Tamika Cross heard a woman screaming for help for her husband, who fell ill on a Delta flight last weekend, she sprang to action. The young black doctor, on her way home from a wedding in Detroit, took off her headphones, put her tray table up and unbuckled her seat belt.

A flight attendant called out for medical assistance for the man, who was unresponsive. Cross, a fourth-year resident at McGovern Medical School at the University of Texas Health Science Center at Houston, raised her hand.

“She said to me, ‘oh no sweetie put ur hand down, we are looking for actual physicians or nurses or some type of medical personnel, we don’t have time to talk to you,’ “ Cross wrote in a Facebook postthat has gone viral."I tried to inform her that I was a physician, but I was continually cut off by condescending remarks.”

Read more here: The disturbing reason why we don’t believe young, black women are really doctors


Texas A&M Health Science Center College of Medicine second year students embark on a nostalgic journey, reliving their first year of medical school in a dream world where Queen’s Bohemian Rhapsody becomes…MED SCHOOL RHAPSODY

How Ultrasound Became the Newest Weapon Against Stroke

Ischemic strokes, caused by blood clots that can develop in the brain and cut off blood flow, make up more than 80 percent of strokes suffered in the U.S. annually. To date, the most effective treatment is the clot-dissolving thrombolysis drug tissue plasminogen activator, tPA. But tPA is a far-from-perfect solution, says Andrew Barreto, a neurologist at the University of Texas Health Science Center in Houston. “IV-tPA will help about 30 of 100 patients who receive it within the first 4.5 hours after stroke symptom onset,” Barreto says. “But, many patients are still disabled, so we need better treatments.”

Barreto and some of his colleagues think that ultrasound could be one of those treatments. Ultrasound has been a valuable tool for diagnosing and tracking strokes in the brain for years. Now, a wide variety of new technologies are making it possible for neurosurgeons to use ultrasound waves, which travel at frequencies too high for the human ear to pick up, to not only identify the signs of stroke such as blood clots in the brain but also to help treat them.

Barreto was a principal researcher in the recent study of the Clotbust device, a headband-like piece of equipment placed on a patient’s head that aims to use ultrasound directed to increase tPA’s effectiveness in breaking up clots in the brain. A preliminary test of the device, which fires 2-MHz pulses of ultrasound from a series of 18 transducers at 5-second intervals, found that it was safe to use in stroke patients. Now, the device is in the midst of effectiveness testing on a group of 830 stroke patients worldwide.

One of the sites involved in testing the device is Swedish Neuroscience Center in Seattle, where chief of neuroscience David Newell notes that preliminary results from the trial were promising. In safety trials, the Clotbust device combined with the thrombolysis drug tPA cleared 40 percent of clots in ischemic strokes in the first two hours after being used. That’s twice as effective as the 20 percent clearance rate usually achieved by tPA alone.

Clotbust isn’t the only tool of its kind being tested at Swedish. Newell and his colleagues are involved in testing three different types of ultrasound technologies for a variety of neurological ailments. Those include one technique devised by. Newell in collaboration with EKOS corporation, a Seattle-area company specializing in ultrasound-emitting catheters, which are designed to travel up a blood vessel and transmit ultrasound from an emitter at its tip, to help loosen blood clots. Newell and his colleagues have been testing a modified version of the EkoSonic catheter, which can more easily be placed directly in the brain and used to detect a different type of stroke known as intracerebral hemorrhage (ICH).

Caused by bleeding from ruptured blood vessels deep in the brain, ICH strokes are much harder to treat because of their location. They are also particularly deadly, with a mortality rate north of 50 percent. Even those who survive are likely to be left disabled or with long roads to recovery. The tPA may be effective in treating these strokes as well, breaking up the clots in the brain that form around the bleed and allowing fluid to be drained off before it can do lasting harm.

While the effectiveness of tPA in treating ICH is still being studied, Newell and his team used the repurposed EkoSonic catheter to improve delivery of clot-busting drugs to bleed sites deep in the brain, and their early results are promising. In an introductory round of tests on nine patients at Swedish, Newell and his colleagues found that clots accompanying hemorrhagic strokes were cleared three times faster by a combination of ultrasound and tPA than they were by drugs alone. By combining the two techniques, Newell said, he and his team could clear clots from most patients in the first day of treatment. He’s now working with the company that developed the technology on creating a new type of catheter, designed specifically for use within the brain, that combines drug delivery, ultrasound emission, and drainage in one tool.

Neither Clotbust nor the EkoSonic catheter uses ultrasound to physically destroy clots. Instead, the blasts of high-frequency sound produce “a micromechnical action that makes the lytic effect of tPA a lot more effective,” by improving the efficiency with which it is delivered. “Injecting tPA is like putting an ice cube in a drink and waiting for it to melt,” says Newell. “With ultrasound, it’s more akin to creating a snow flurry. The drug binds to more binding sites, and it does so a lot faster.”

That’s not the case in the third ultrasound device being tested at Swedish. The ExAblate Neuro device developed by Israeli company InsighTec uses thousands of beams of ultrasound focused on one spot to create intense heat at a targeted point in the brain. The ExAblate Neuro mimics the effects of a tool used in neurosurgery for years, the gamma knife, which uses highly focused radiation energy to cut out material like tumors or to create lesions that can lessen the effects of diseases like Parkinson’s or epilepsy. In the case of stroke, the Neuro could potentially superheat solidified clots, turning them to more easily cleared liquid.

Since it uses focused ultrasound rather than the dangerous radiation associated with the gamma knife, says Newell, ExAblate has the potential to perform similar surgeries that are more easily repeatable. Current gamma knife surgeries have to get it right the first time, as exposing patients to powerful radiation over and over again can be dangerous. Since ultrasound energy doesn’t carry the same exposure dangers, doctors could potentially do the same sort of treatments in smaller steps without raising concerns over patient health.

All three of these new methods are still in their experimental phases, but each one has the potential to transform—and improve—the way strokes and other ailments in the brain are treated. And that may be only the beginning of the potential for the techniques. “Ultrasound technology represents almost a whole new field in neurosurgery,” said Newell.