geology of mars

vimeo

The HiRise camera on the Mars Reconnaissance Orbiter Spacecraft has been taking pictures of the planet’s surface for more than a decade now. At its highest resolution, it can see features less than a meter across - the scale of geologic units, sand dunes, and boulders. It can also be targeted by request from literally anyone, if you had a site you wanted to image. Using the publicly available photographs from HiRISE, this video is stitched together as a flight over Mars, including a glimpse of its moon Phobos.

Explore the craters, mountains, and valley networks of the red planet. Somehow both geologic and yet different from what we’re used to.

2

RESEARCHERS PRODUCE DETAILED MAP OF POTENTIAL MARS ROVER LANDING SITE

Brown University researchers have published the most detailed geological history to date for a region of Mars known as Northeast Syrtis Major, a spot high on NASA’s list of potential landing sites for its next Mars rover to be launched in 2020.

The region is home to a striking mineral diversity, including deposits that indicate a variety of past environments that could have hosted life. Using the highest resolution images available from NASA’s Mars Reconnaissance Orbiter, the study maps the extent of those key mineral deposits across the surface and places them within the region’s larger geological context.

“When we look at this in high resolution, we can see complicated geomorphic patterns and a diversity of minerals at the surface that I think is unlike anything we’ve ever seen on Mars,” said Mike Bramble, a Ph.D. student at Brown who led the study, which is published in the journal Icarus. “Within a few kilometers, there’s a huge spectrum of things you can see and they change very quickly.”

If NASA ultimately decides to land at Northeast Syrtis, the work would help in providing a roadmap for the rover’s journey.

“This is a foundational paper for considering this part of the planet as a potential landing site for the Mars 2020 rover,” said Jack Mustard, a professor in Brown’s Department of Earth, Environmental and Planetary Sciences and a coauthor on the paper. “This represents an exceptional amount of work on Mike’s part, really going into the key morphologic and spectroscopic datasets we need in order to understand what this region can tell us about the history of Mars if we explore it with a rover.”

Past Habitable Environments

Northeast Syrtis sits between two giant Martian landforms – an impact crater 2,000 kilometers in diameter called the Isidis Basin, and a large volcano called Syrtis Major. The impact basin formed about 3.96 billion years ago, while lava flow from the volcano came later, about 3.7 billion years ago. Northeast Syrtis preserves the geological activity that occurred in the 250 million years between those two events. Billions of years of erosion, mostly from winds howling across the region into the Isidis lowlands, have exposed that history on the surface.

Within Northeast Syrtis are the mineral signatures of four distinct types of watery and potentially habitable past environments. Those minerals had been detected by prior research, but the new map shows in detail how they are distributed within the region’s larger geological context. That helps constrain the mechanisms that may have formed them, and shows when they formed relative to each other.

The lowest and the oldest layer exposed at Northeast Syrtis has the kind of clay minerals formed when rocks interact with water that has a fairly neutral pH. Next in the sequence are rocks containing kaolinite, a mineral formed by water percolating through soil. The next layer up contains spots where the mineral olivine has been altered to carbonate – an aqueous reaction that, on Earth, is known to provide chemical energy for bacterial colonies. The upper layers contain sulfate minerals, another sign of a watery, potentially life-sustaining environment.

Understanding the relative timing of these environments is critical, Mustard says. They occurred around the transition between the Noachian and Hesperian epochs – a time of profound environmental change on Mars.

“We know that these environments existed near this major pivot point in Mars history, and in mapping their context we know what came first, what came next and what came last,” Mustard said. “So now if we’re able to go there with a rover, we can sample rock on either side of that pivot point, which could help us understand the changes that occurred at that time, and test different hypotheses for the possibility of past life.”

And finding signs of past life is the primary mission of the Mars 2020 rover. NASA has held three workshops in which scientists debated the merits of various landing targets for the rover. Mustard and Bramble have led the charge for Northeast Syrtis, which has come out near the top of the list at each workshop. Last February, NASA announced that the site is one of the final three under consideration.

Mustard and Bramble hope this latest work might inform NASA’s decision, and ultimately help in planning the Mars 2020 mission.

“As we turn our eyes to the next target for in situ exploration on the Martian surface,” the researchers conclude, “no location offers better access of the gamut of geological processes active at Mars than Northeast Syrtis Major.”

TOP IMAGE…. A diverse landscape A false color image highlights the complex geology of the Northeast Syrtis Major region on Mars.
NASA/JPL/University of Arizona

LOWER IMAGE….A detailed map shows the the various geologic units exposed at Northeast Syrtis.
Credit: Mike Bramble/Mustard Lab

instagram
4

Evidence of Martian life could be hard to find in some meteorite blast sites

Scientists in their preliminary findings suggest signs of life from under Mars’ surface may not survive in rocks excavated by some meteorite impacts.

Scientists analysing samples from Mars’ surface have so far not conclusively detected organic compounds that are indigenous to Mars, which would be indicators of past or present life. The inconclusive results mean that researchers are now suggesting that a good place to find these organic compounds would be deep underground - from rocks that have been blasted to the surface by meteor impacts. This is because such rocks have been sheltered from the Sun’s harmful radiation and from chemical processes on the surface that would degrade organic remains.

Now, a team of scientists from Imperial College London and the University of Edinburgh has replicated meteorite blasts in the lab. The aim of the study was to see if organic compounds encased in rock could survive the extreme conditions associated with them being blasted to the surface of Mars by meteorites. The study, published today in Scientific Reports, suggests that rocks excavated through meteorite impacts may incorrectly suggest a lifeless early Mars, even if indicators of life were originally present.

In the study the team replicated blast impacts of meteorites of around 10 metres in size. The researchers found that the types of organic compounds found in microbial and algal life - long chain hydrocarbon-dominated matter- were destroyed by the pressures of impact. However, the types of organic compounds found in plant matter - dominated by aromatic hydrocarbons - underwent some chemical changes, but remained relatively resistant to impact pressures. Meteorites often contain organic matter not created by life, which have some similarities in their organic chemistry to land plants. The team infer that they also should also be resistant to blast impacts.

Their study could help future missions to Mars determine the best locations and types of blast excavated rocks to examine to find signs of life. For example, it may be that meteorite impacts of a certain size may not destroy organic compounds or scientists may need to concentrate on rocks excavated from a certain depth.

Professor Mark Sephton, co-author of the research from the Department of Earth Science and Engineering at Imperial College London, said: “We’ve literally only scratched the surface of Mars in our search for life, but so far the results have been inconclusive. Rocks excavated through meteorite impacts provide scientists with another unique opportunity to explore for signs of life, without having to resort to complicated drilling missions. Our study is showing us is that we may need to be nuanced in our approach to the rocks we choose to analyse.”
Dr Wren Montgomery, co-author of the study from the Department of Earth Science and Engineering, added: “The study is helping us to see that when organic matter is observed on Mars, no matter where, it must be considered whether the sample could have been affected by the pressures associated with blast impacts. We still need to do more work to understand what factors may play an important role in protecting organic compounds from these blast impacts. However, we think some of the factors may include the depths at which the rock records are buried and the angles at which meteorites hit the Martian surface.”

Previous in situ analyses of the Martian terrain have found inconclusive evidence for the existence organic compounds - so far only finding chlorinated organic matter. The issue for scientists has been that it is not easy to look at simple chlorine-containing organic molecules and determine the origin of the organic compound components.

NASA’s Viking landers in 1976 detected chlorine-containing organic compounds, but they were thought to be chemical left-overs from cleaning procedures of Viking’s equipment before it left Earth. Later, the Phoenix Mission in 2008 discovered chlorine-containing minerals on the Martian surface, but no organic compounds. In 2012 the Mars Science Laboratory Mission detected chlorinated organic matter, but they thought that the analysis process, which involved heating chlorine containing minerals and carbonaceous material together, was producing chlorine-containing organic compounds. Working out whether the source of the carbon found on Mars was carried once again from Earth or was indigenous to Mars remains frustratingly difficult for scientists.

The team carried out their research by subjecting the different types of organic matter to extreme pressure and temperature in a piston cylinder device. They then did a chemical analysis using pyrolysis-gas chromatography mass spectrometry.

The next steps will see the team investigating a broader range of pressures and temperatures, which would help them understand the likely effects of a greater range of meteorite impacts. This would enable them to identify the specific conditions under which organic material may escape the destructive effects of blasts - even when excavated from deep underground by violent events. This could help future Mars missions further refine the types and locations of rocks that they can analyse for signs of past or present life.

10

The Evidence For Water On Mars Is Overwhelming

“Hematite spherules, known as “Martian blueberries,” provided strong indirect evidence of water. As water diffuses through the surface rock, minerals precipitate out of solution and form erosion-resistant spheres: geologically forming concretions. But by far the strongest evidence comes from the recurring slope lineae.”

Ever since we first began observing Mars up close, there was well-founded speculation that there was a watery past. What appeared to be water-ice features and water-based clouds were abundant, and indirect clues like sedimentary rock, dried-up riverbeds and deposits that appeared to have a watery origin appeared to be everywhere we looked. But the strongest evidence is recent, and came from looking at the sloping, linear features inside the crater walls. We’ve seen them increase in size over time, and when we measure them with orbiting spectral devices, we find evidence of salt deposits. This means that, on the surface, there’s flowing briny, liquid water! The water evaporates, leaving the salt deposits behind.

The evidence for water on Mars is indeed overwhelming at present; come and see it for yourself today!

Mars Gullies Likely Not Formed by Liquid Water

New findings using data from NASA’s Mars Reconnaissance Orbiter show that gullies on modern Mars are likely not being formed by flowing liquid water. This new evidence will allow researchers to further narrow theories about how Martian gullies form, and reveal more details about Mars’ recent geologic processes.

Scientists use the term “gully” for features on Mars that share three characteristics in their shape: an alcove at the top, a channel, and an apron of deposited material at the bottom. Gullies are distinct from another type of feature on Martian slopes, streaks called “recurring slope lineae,” or RSL, which are distinguished by seasonal darkening and fading, rather than characteristics of how the ground is shaped.

Water in the form of hydrated salt has been identified at RSL sites.

The new study focuses on gullies and their formation process by adding composition information to previously acquired imaging.

Researchers from the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland, examined high-resolution compositional data from more than 100 gully sites throughout Mars. These data, collected by the orbiter’s Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), were then correlated with images from the same spacecraft’s High Resolution Imaging Science Experiment (HiRISE) camera and Context Camera (CTX).

The findings showed no mineralogical evidence for abundant liquid water or its by-products, thus pointing to mechanisms other than the flow of water – such as the freeze and thaw of carbon dioxide frost – as being the major drivers of recent gully evolution.

The findings were published in Geophysical Research Letters.
Gullies are a widespread and common feature on the Martian surface, mostly occurring between 30 and 50 degrees latitude in both the northern and southern hemispheres, generally on slopes that face toward the poles. On Earth, similar gullies are formed by flowing liquid water; however, under current conditions, liquid water is transient on the surface of Mars, and may occur only as small amounts of brine even at RSL streaks. The lack of sufficient water to carve gullies has resulted in a variety of theories for the gullies’ creation, including different mechanisms involving evaporation of water and carbon dioxide frost.

“The HiRISE team and others had shown there was seasonal activity in gullies – primarily in the southern hemisphere – over the past couple of years, and carbon dioxide frost is the main mechanism they suspected of causing it. However, other researchers favored liquid water as the main mechanism,” said Jorge Núñez of APL, the lead author of the paper.

“What HiRISE and other imagers were not able to determine on their own was the composition of the material in gullies, because they are optical cameras. To bring another important piece in to help solve the puzzle, we used CRISM, an imaging spectrometer, to look at what kinds of minerals were present in the gullies and see if they could shed light on the main mechanism responsible.”

Núñez and his colleagues took advantage of a new CRISM data product called Map-projected Targeted Reduced Data Records. It allowed them to more easily perform their analyses and then correlate the findings with HiRISE imagery.

“On Earth and on Mars, we know that the presence of phyllosilicates – clays – or other hydrated minerals indicates formation in liquid water,” Núñez said. “In our study, we found no evidence for clays or other hydrated minerals in most of the gullies we studied, and when we did see them, they were erosional debris from ancient rocks, exposed and transported downslope, rather than altered in more recent flowing water. These gullies are carving into the terrain and exposing clays that likely formed billions of years ago when liquid water was more stable on the Martian surface.”

Other researchers have created computer models that show how sublimation of seasonal carbon dioxide frost can create gullies similar to those observed on Mars, and how their shape can mimic the types of gullies that liquid water would create. The new study adds support to those models.

APL built and operates CRISM, one of six instruments with which the Mars Reconnaissance Orbiter project has been examining Mars since 2006. NASA’s Jet Propulsion Laboratory, a division of the Caltech in Pasadena, California manages the project for the NASA Science Mission Directorate in Washington. Lockheed Martin Space Systems of Denver built the orbiter and supports its operations.

IMAGE….The highly incised Martian gullies seen in the top image resemble gullies on Earth that are carved by liquid water. However, when the gullies are observed with the addition of mineralogical information (bottom), no evidence for alteration by water appears.
The pictured area spans about 2 miles (3 kilometers) on the eastern rim of Hale Crater. The High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter took the visible-light image. Color-coded compositional information added in the lower version comes from the same orbiter’s Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). Color coding in light blue corresponds to surface composition of unaltered mafic material, of volcanic origin. Mafic material from the crater rim is carved and transported downslope along the gully channels. No hydrated minerals are observed within the gullies, in the data from CRISM, indicating limited interaction or no interaction of the mafic material with liquid water. These findings and related observations at about 100 other gully sites on Mars suggest that a mechanism not requiring liquid water may be responsible for carving these gullies on Mars. (Gullies on Mars are a different type of feature than seasonal dark streaks called recurring slope lineae or RSL; water in the form of hydrated salt has been identified at RSL sites.)
The HiRISE image is a portion of HiRISE observation PSP_002932_1445. The lower image is from the same HiRISE observation, with a CRISM mineral map overlaid.

2

Scientists To Plan Missions And Explore Mars Through Holograms 

For planetary scientists, a hologram of a distant planet might be the next best thing to being there. While NASA’s goal to send astronauts to Mars sometime in the 2030s is still a long time off, researchers will start setting their feet down on a data-based three-dimensional representation of the red planet later this year.

In other words, the first iteration of a NASA science holodeck is here.

It was just yesterday that Microsoft announced its HoloLens, what the company bills as a powerful holographic computing headset. “For the first time ever, Microsoft HoloLens brings high-definition holograms to life in your world, where they integrate with your physical places, spaces, and things,” the company says.

While many applications for virtual and augmented reality systems have already been identified thanks to projects like Google Glass and Oculus Rift, the U.S. space agency is sounding vocal support for the science applications of HoloLens from the get-go.

Keep reading

Watch on the-earth-story.com

anonymous asked:

why is there a huge volcano on mars?

For those of you who don’t know already, Olympus Mons, the largest volcano in the solar system, is on Mars (as well as numerous other massive volcanoes).

Unlike Earth, Mars doesn’t have tectonic plates. This means that all the internal heat is getting released at one stable point where it can erupt from.

Over the course of billions of years and many eruptions, the lava flowing down the volcano builds up and dries. With the volcanic rock on top of the previous crust of the volcano, the volcano itself becomes that much taller. Over time the just kept happening.

Also important is that Mars has much less gravity than Earth. Things can get larger without the gravity over time pulling it back down towards the surface.

I believe the consensus is that Olympus Mons is still active in some capacity.

(Image credit: Resident Mario)

Mars Maze

A bright ice cap of frozen water covers the North Pole of Mars. In the winter, thin coverings of carbon dioxide and water frost covers this area and these frosts finally disappear at the end of the Martian spring season.

Caption: Shane Byrne/HiRISE

In this image, the winter frosts are about to disappear and we can begin to see the surface features of the ice. The ice cap would be a bad place to get lost: it’s one of the smoothest, flattest places on Mars so there are no landmarks visible. The surface features are gently rolling hummocks (or small mounds) and hollows about a meter (3 feet) in height and about 20 meters (60 feet) across. This monotonous landscape continues for hundreds of kilometers in every direction with this same repeating pattern.

Scientists do not know what makes this pattern so uniform over such large distances; we acquire HiRISE images like this one to look for small differences in these icy features from one place to another. Understanding this surface can help us understand the current climate and meteorological conditions at the North Pole of the Red Planet.