e elt

A Lokál a héten lejáratósorozatot közölt a Momentumosokról, ma például Kőszegi Tamás került sorra. A cikk azért különösen undorító, mert a gólyatáborban történt nemi erőszakkal próbálja összemosni Tamást, pedig ő volt az, aki a rendőrség kiérkezéséig bezárta az elkövetőt egy faházba. 

Bár kérdéseket írtak előtte, a válaszainkat már nem közölték. Ezek voltak azok:
1) Milyen tevékenységet folytat jelenleg a korábban többször is feltűnű Kőszegi Tamás a Momentum Mozgalomban?
Kőszegi Tamás az oktatáspolitikai és az informatikai munkacsoportjainkban végez munkát.

2) Valóban csatlakozott-e Kőszegi Tamás az ELTE IK hallgatói önkormányzatához azok után, hogy a botrányos Multikulti Gólyatáborban történtek okán visszahívták őt az ELTE TÓK HÖK-ből?

3) Amennyiben igen, miből gondolja Kőszegi Tamás, hogy a fonyódligeti botrány után tovább kell dolgoznia a hallgatók érdekérvényesítéséért?
(Erre Tamás írt választ):

“Nem értem, miért merül fel ilyen kérdés. A TÓK-os gólyatáborban, amikor tudomásomra jutott a bűncselekmény (vagy annak gyanúja), bezártam őt a faházba, tájékoztattam a csapatot a fejleményekről és megkezdtük az “intézkedést”, melynek természetesen első pontjaként a feltételezett áldozattal beszéltem, próbáltam minél több információhoz jutni, hogy a rendőrséget kompetens módon tudjuk segíteni a munkájukban. Az üggyel kapcsolatban a lelkiismeretem tiszta.”


Does Dark Matter Exist, Or Is Gravity Wrong? The Answer Lies Billions Of Years In The Past

“If this result holds up with more and better data, this may provide a window into galactic evolution that finally allows us to discriminate between dark matter and modified gravity in a clear and robust way. These types of observations, to measure the rotation curves of galaxies many of billions of light years away, will be a prime science goal for new telescopes in the 2020s like GMT, E-ELT and WFIRST. Both sides will continue to argue for their interpretation of the data, but in the end, it will be the full suite of data that reveals how nature truly behaves. Will Einstein be superseded? Or will we all wind up joining the dark side? By time another decade goes by, the answer may finally be known.”

The dark matter wars rage on and on, with both sides – those in favor of modifying gravity and those in favor of adding an additional mass component to the Universe – claiming victories for their own side and defeat for the other. But one piece of evidence, hitherto elusive, might finally hold the key to distinguishing one from the other: early, young, less-evolved galaxies. Billions of years ago, not as much dark matter had fallen into the inner portions of galaxies, meaning that the outer portions of rotating spirals should display less dark matter in the past than they do today. Instead of flat rotation curves, the galaxies in the distant Universe should exhibit falling rotation curves. In a series of new papers, a team was able to observe 101 distant galaxies at relatively high redshifts, and what they found presented compelling evidence for exactly this phenomenon. As always, more and better data is needed, as it’s only a three-sigma effect so far. 

But as the first hint of this long-anticipated effect, it’s a compelling preview of what the telescopes of the 2020s will offer! Come get the scientific story today.


Four Lasers Over Paranal

First light for the Four Laser Guide Star Facility on ESO’s Very Large Telescope

On 26 April 2016 ESO’s Paranal Observatory in Chile hosted an event to mark the first light for the four powerful lasers that form a crucial part of the adaptive optics systems on ESO’s Very Large Telescope. Attendees were treated to a spectacular display of cutting-edge laser technology against the majestic skies of Paranal. These are the most powerful laser guide stars ever used for astronomy and the event marks the first use of multiple laser guide stars at ESO.

ESO staff were present for the event, along with senior representatives of the companies that have manufactured the different components of the new system.

The Four Laser Guide Star Facility (4LGSF) shines four 22-watt laser beams into the sky to create artificial guide stars by making sodium atoms in the upper atmosphere glow so that they look just like real stars [1]. The artificial stars allow the adaptive optics systems to compensate for the blurring caused by the Earth’s atmosphere and so that the telescope can create sharp images. Using more than one laser allows the turbulence in the atmosphere to be mapped in far greater detail to significantly improve the image quality over a larger field of view.

The Four Laser Guide Star Facility is an example of how ESO enables European industry to lead complex research and development projects. The fibre laser used by the 4LGSF is also one of the most successful transfers of ESO technology to industry.

TOPTICA, the German main contractor, was responsible for the laser system and provided the oscillator, the frequency doubler, and the system control software. Wilhelm Kaenders, president of TOPTICA, said: “TOPTICA has enjoyed the collaboration with ESO tremendously. It is not only the personal thrill of being engaged with astronomy, an old passion, again, and working with very clever ESO technologists; it is also the inspiration that we have received for our own commercial product development.” [2]

MPBC of Canada provided the fibre laser pumps and Raman amplifiers, which are based on an ESO licensed patent. Jane Bachynski, President of MPB Communications Inc. said: “MPBC is proud to have worked with ESO in the development of Raman fibre amplifiers to much higher powers, allowing MPBC to bring this technology to the stars. This event marks the culmination of many years of hard work on behalf of all involved.” [3]

TNO in the Netherlands manufactured the optical tube assemblies, which expand the laser beams and direct them into the sky. Paul de Krom, CEO of TNO, said: “TNO valued the cooperative working environment during the development of the optical tube assemblies and looks forward to the opportunity to work with ESO and the other partners in the 4LGSF project in the future.” [4]

The 4LGSF is part of the Adaptive Optics Facility on Unit Telescope 4 of the VLT, designed specifically to provide the adaptive optics systems GALACSI/MUSE and GRAAL/HAWK-I with four sodium laser guide stars. With this new facility, Paranal Observatory continues to have the most advanced and the largest number of adaptive optics systems in operation today.

The 4LGSF lasers were developed by ESO with industry and have already been procured, among others, by the Keck Observatory (which contributed to the industrial laser development cost along with the European Commission) and the Subaru Telescope. In the future these industrial lasers will also feature on the telescopes at the Gemini Observatory and will be the preferred choice for several other observatories and extremely large telescope projects.

The new techniques developed for the Four Laser Guide Star Facility pave the way for the adaptive optics system of the European Extremely Large Telescope (E-ELT), the world’s biggest eye on the sky.


[1] The 4LGSF is the second generation laser guide star facility, built by ESO for the Adaptive Optics Facility on the UT4 VLT telescope. The two critical long-lead items for the 4LGSF, the laser system and the optical tube assemblies for the laser launch telescope systems have been procured from industry. The fibre Raman laser technology, on which the 4LGSF laser system is based, has been developed at ESO, patented and licensed to industry.

[2] This project has allowed TOPTICA to extend its products into a new wavelength and output power regime. It now produces the SodiumStar 20/2, which is recognised as a quasi-standard for existing and planned telescopes around the world. All next generation extremely large telescope projects, for example, use the SodiumStar laser as their baseline. During the seven years of collaboration with ESO the company has grown from 80 people to more than 200 today.

[3] MPBC’s collaboration with ESO has also generated an additional benefit, in the form of an offshoot product line of single frequency amplification products at virtually any wavelength, supporting novel applications for the scientific and commercial research community.

[4] The developments by TNO also involved contributions from many suppliers from the Netherlands (Vernooy, Vacutech, Rovasta, Schott Benelux, Maxon Motor Benelux, IPS technology, Sensordata and WestEnd) and other international companies (RMI, Qioptiq, Laser Components, Carl Zeiss, GLP, Faes, Farnell, Eriks and Pfeiffer). The knowledge and technologies advanced by working with ESO feed into TNO’s Dutch and European partners, in fields including astronomy, communications, semiconductor manufacturing, medical devices, space science and Earth observation.

More information

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

The telescope big enough to spot signs of alien life on other planets

Engineers are about to blast away the top of a Chilean mountain to create a site for the European Extremely Large Telescope. It will allow us, for the first time, to directly observe planets outside the solar system.

External image

An artist’s impression of the European Extremely Large Telescope (E-ELT).

Cerro Armazones is a crumbling dome of rock that dominates the parched peaks of the Chilean Coast Range north of Santiago. A couple of old concrete platforms and some rusty pipes, parts of the mountain’s old weather station, are the only hints that humans have ever taken an interest in this forbidding, arid place. Even the views look alien, with the surrounding boulder-strewn desert bearing a remarkable resemblance to the landscape of Mars.

Dramatic change is coming to Cerro Armazones, however – for in a few weeks, the 10,000ft mountain is going to have its top knocked off. “We are going to blast it with dynamite and then carry off the rubble,” says engineer Gird Hudepohl. “We will take about 80ft off the top of the mountain to create a plateau – and when we have done that, we will build the world’s biggest telescope there.”

Given the peak’s remote, inhospitable location that might sound an improbable claim – except for the fact that Hudepohl has done this sort of thing before. He is one of the European Southern Observatory’s most experienced engineers and was involved in the decapitation of another nearby mountain, Cerro Paranal, on which his team then erected one of the planet’s most sophisticated observatories.

The Paranal complex has been in operation for more than a decade and includes four giant instruments with eight-metre-wide mirrors – known as the Very Large Telescopes or VLTs – as well as control rooms and a labyrinth of underground tunnels linking its instruments. More than 100 astronomers, engineers and support staff work and live there. A few dozen metres below the telescopes, they have a sports complex with a squash court, an indoor football pitch, and a luxurious 110-room residence that has a central swimming pool and a restaurant serving meals and drinks around the clock. Built overlooking one of the world’s driest deserts, the place is an amazing oasis. (See box.)

Now the European Southern Observatory, of which Britain is a key member state, wants Hudepohl and his team to repeat this remarkable trick and take the top off Cerro Armazones, which is 20km distant. Though this time they will construct an instrument so huge it will dwarf all the telescopes on Paranal put together, and any other telescope on the planet. When completed, the European Extremely Large Telescope (E-ELT) and its 39-metre mirror will allow astronomers to peer further intospace and look further back into the history of the universe than any other astronomical device in existence. Its construction will push telescope-making to its limit, however. Its primary mirror will be made of almost 800 segments – each 1.4 metres in diameter but only a few centimetres thick – which will have to be aligned with microscopic precision.

It is a remarkable juxtaposition: in the midst of utter desolation, scientists have built giant machines engineered to operate with smooth perfection and are now planning to top this achievement by building an even more vast device. The question is: for what purpose? Why go to a remote wilderness in northern Chile and chop down peaks to make homes for some of the planet’s most complex scientific hardware?

The answer is straightforward, says Cambridge University astronomer Professor Gerry Gilmore. It is all about water. “The atmosphere here is as dry as you can get and that is critically important. Water molecules obscure the view from telescopes on the ground. It is like trying to peer through mist – for mist is essentially a suspension of water molecules in the air, after all, and they obscure your vision. For a telescope based at sea level that is a major drawback.

"However, if you build your telescope where the atmosphere above you is completely dry, you will get the best possible views of the stars – and there is nowhere on Earth that has air drier than this place. For good measure, the high-altitude winds blow in a smooth, laminar manner above Paranal – like slabs of glass – so images of stars remain remarkably steady as well.”

The view of the heavens here is close to perfect, in other words – as an evening stroll around the viewing platform on Paranal demonstrates vividly. During my visit, the Milky Way hung over the observatory like a single white sheet. I could see the four main stars of the Southern Cross; Alpha Centauri, whose unseen companion Proxima Centauri is the closest star to our solar system; the two Magellanic Clouds, satellite galaxies of our own Milky Way; and the Coalsack, an interstellar dust cloud that forms a striking silhouette against the starry Milky Way. None are visible in northern skies and none appear with such brilliance anywhere else on the planet.

Hence the decision to build this extraordinary complex of VLTs. At sunset, each one’s housing is opened and the four great telescopes are brought slowly into operation. Each machine is made to rotate and swivel, like football players stretching muscles before a match. Each housing is the size of a block of flats. Yet they move in complete silence, so precise is their engineering.

Building the four VLTs, which have been named Antu (Sun), Kueyen (Moon), Melipal (Southern Cross) and Yepun (Venus) in the language of Mapuche people of Chile, was a formidable challenge, needless to say. Each has a giant mirror that is 8.2 metres in diameter but only 17cm thick: any thicker, and the mirror would be too heavy to move and point. Such thinness leaves the mirrors liable to deform as temperatures and air pressure fluctuate, however, and so each has 150 actuators fitted to its unpolished side. These push the mirrors to keep them within a few billionths of a centimetre of their proper shape. In addition, ESO astronomers use a laser-based system known as adaptive optics to measure turbulence in the upper atmosphere and to change each telescope’s internal mirror configuration to compensate for any disturbance they can measure.

The result is a cluster of astronomical devices of incredible power and flexibility, one that has been involved in an astonishing number of critically important discoveries and observations over the past decade, as ESO astronomer Olivier Hainaut explains. “Perhaps the VLT’s most spectacular achievement was its tracking of stars at the centre of the Milky Way. Astronomers followed them as they revolved around… nothing. Eventually they were able to show that something incredibly small and dark and massive lay at the centre of this interstellar waltz. This was the first time, we now know, that scientists had directly observed the effect of the supermassive black hole that lies at the heart of our galaxy.”

External image
The Milky Way seen from the Paranal Observatory in Chile. Photograph: National Geographic Image Collec/Alamy

The VLTs also played a key role in providing observations which showed, from the behaviour of distant supernovae, that the expansion of the universe was actually accelerating thanks to the action of a force now known as dark energy. This discovery later won Saul Perlmutter, Brian Schmidt and Adam Riess the 2011 Nobel prize for physics. And in 2004 the telescopes were used to make a direct observation of an exoplanet – a planet that orbits around a star other than our Sun. It was another astronomical first. Until then scientists had only been able to infer the existence of exoplanets from the way they affected the movement of their parent star or its light output. “This was history-book material, a discovery of the same quality as Galileo’s drawings of the mountains on the moon or the satellites of Jupiter,” says Hainaut.

These discoveries have only whetted astronomers’ appetites for more, however. Hence the decision to build the £800m E-ELT – whose British funding will come through a £88m investment from the UK Science & Technology Facilities Council. Engineers have now completed a road to the mountain from Paranal and on 16 June are set to begin blasting to remove the top from Cerro Armazones. Then they will start to build the E-ELT using 798 hexagonal pieces of mirror to create a mammoth device that will be able to collect a hundred million times more light than the human eye. When completed in around 2025, the 2,700-tonne telescope will be housed in a 74 metre high dome and operated by astronomers working 20kms away in Paranal. It will be the world’s biggest eye on the sky.

An indication of the E-ELT’s potential is provided by ESO astronomer Linda Schmidtobreick. “There are fundamental issues that only a telescope the size of the E-ELT can resolve,” she says. “Its mirror will have a surface area 10 times bigger than any other telescope, which means it will take a 10th of the time to collect the same amount of light – ie the same number of photons – from an object compared with these other instruments.”

External image
The astronomers’ residence: ‘As accommodation goes, it’s as exotic as you can get.

For Schmidtobreick, this ability to collect light quickly is crucial to her research. She studies stars known as cataclysmic variables: pairs of stars in which one is pulling vast amounts of gas, mainly hydrogen, from its companion, a process that can trigger gigantic thermonuclear eruptions, sometimes within 30 seconds or so. “With current instruments, it can take minutes or hours to collect light from these objects, which is too long to resolve what is happening,” says Schmidtobreick. “But with the E-ELT, we will be able to study many, many more cataclysmic variables because we will be able to collect significant amounts of light from them in seconds rather than minutes or hours and so will be to resolve their behaviour.”

Simone Zaggia, of the Inaf Observatory of Padua, is another frequent visitor to Paranal and has a very different reason for backing the E-ELT. He believes it will play a vital role in the hunt for exoplanets – in particular, exoplanets that are Earth-like and which could support life. “At present, our biggest telescopes can only spot really big exoplanets, giants that are as big as Jupiter and Saturn,” he says.

“But we really want to know about the smaller worlds that make up the solar systems in our galaxy. In other words, we want to find out if there are many Earth-like planets in our part of the universe. More importantly we want to find out if their atmospheres contain levels of oxygen or carbon dioxide or methane or other substances that suggest there is life there. To do that, we need a giant telescope like the E-ELT.”

This point is backed by Gilmore. “We can see exoplanets but we cannot study them in detail because – from our distant perspective – they appear so close to their parent stars. However, the magnification which the E-ELT will provide will mean we will be able to look at them directly and clearly. In 15 years, we should have a picture of a planet around another star and that picture could show its surface changing colour just as Earth does as the seasons change – indicating that vegetation exists on that world. We will then have found alien life.”

Astronomers’ amazing home

A walk down the alleyway that leads from Paranal observatory’s entrance gate into its astronomers’ residence produces one of the most striking changes in surroundings you can experience in a few footsteps. Outside the air is parched and the ground bleached by sunlight from a sky that is hardly ever troubled by clouds. Push through the double swing doors and you enter a rainforest – and a path that leads down through towering ferns and tropical plants until you reach a swimming pool in the residence’s lowest level. As accommodation goes, it’s as exotic as you can get - though hedonism was far from the minds of the architects when they designed it.

To battle the arid conditions of the air at 8,600ft-high Paranal, they wanted a way to keep it moist and fresh for the scientists staying there. The answer was a swimming pool and an indoor tropical garden that is constantly watered with supplies imported by trucks from the coast every day. Moist air from the pool and garden then circulates around the rest of the residence. The result is a building that is remarkably airy and light – until 7pm when, every night, all openings and windows, including the vast glass dome over the pool, are closed and shuttered automatically to prevent any chink of light from affecting observations made on the mountain top.

The scale and style of Paranal and its residence is extraordinary and movie producers have fallen over themselves in their attempts to film it. Most have been turned down – with the exception of the 2008 Bond film,Quantum of Solace, whose final scenes were filmed here. (In contrast the last X-Men film was turned down flat because its producers wanted to fly helicopters near the observatory’s precious telescope complex.) Given the vast cost of building and running Paranal, filming was not allowed to disturb its tight observing schedule. “I was woken up by the sound of someone repeatedly jumping on to the balcony in the room next to mine,” one astronomer recalls. “It turned out to be the actress Olga Kurylenko - who plays the film’s heroine Camille. It was quite a shock. I mean you don’t get that sort thing happening at other observatories.”


Hey everyone! I wanted to thank everyone for 2.7k so far, but I also wanted an excuse to make a follow forever.

Here are some of my favorite blogs/people!

Enjoy my shitty banner edit!

Sorry If I missed anyone!

(Bolded urls are my extra favorites/tumblr crushes, italicized are my main dawgs/people who I adore)

Keep reading

The birth of monsters

Just counting the number of galaxies in a patch of sky provides a way to test astronomers’ theories of galaxy formation and evolution. However, such a simple task becomes increasingly hard as astronomers attempt to count the more distant and fainter galaxies. It is further complicated by the fact that the brightest and easiest galaxies to observe – the most massive galaxies in the Universe – are rarer the further astronomers peer into the Universe’s past, whilst the more numerous less bright galaxies are even more difficult to find.

A team of astronomers, led by Karina Caputi of the Kapteyn Astronomical Institute at the University of Groningen, has now unearthed many distant galaxies that had escaped earlier scrutiny. They used images from the UltraVISTA (http://ultravista.​org/​) survey, one of six projects using VISTA to survey the sky at near-infrared wavelengths, and made a census of faint galaxies when the age of the Universe was between just 0.75 and 2.1 billion years old.

UltraVISTA has been imaging the same patch of sky, nearly four times the size of a full Moon, since December 2009. This is the largest patch of sky ever imaged to these depths at infrared wavelengths. The team combined these UltraVISTA observations with those from the NASA Spitzer Space Telescope, which probes the cosmos at even longer, mid-infrared wavelengths [1].

“We uncovered 574 new massive galaxies – the largest sample of such hidden galaxies in the early Universe ever assembled,” explains Karina Caputi. “Studying them allows us to answer a simple but important question: when did the first massive galaxies appear?”

Imaging the cosmos at near-infrared wavelengths allowed the astronomers to see objects that are both obscured by dust, and extremely distant [2], created when the Universe was just an infant.

The team discovered an explosion in the numbers of these galaxies in a very short amount of time. A large fraction of the massive galaxies [3] we now see around us in the nearby Universe were already formed just three billion years after the Big Bang.

“We found no evidence of these massive galaxies earlier than around one billion years after the Big Bang, so we’re confident that this is when the first massive galaxies must have formed,” concludes Henry Joy McCracken, a co-author on the paper [4].

In addition, the astronomers found that massive galaxies were more plentiful than had been thought. Galaxies that were previously hidden make up half of the total number of massive galaxies present when the Universe was between 1.1 and 1.5 billion years old [5]. These new results, however, contradict current models of how galaxies evolved in the early Universe, which do not predict any monster galaxies at these early times.

To complicate things further, if massive galaxies are unexpectedly dustier in the early Universe than astronomers predict then even UltraVISTA wouldn’t be able to detect them. If this is indeed the case, the currently-held picture of how galaxies formed in the early Universe may also require a complete overhaul.

The Atacama Large Millimeter/submillimeter Array (ALMA) will also search for these game-changing dusty galaxies. If they are found they will also serve as targets for ESO’s 39-metre European Extremely Large Telescope (E-ELT - http://eso.​org/​e-elt), which will enable detailed observations of some of the first ever galaxies.