drag reduction

Like many sharks, the great hammerhead shark is negatively buoyant, meaning that, absent other forces, it would sink in water. To compensate, sharks generate lift with their pectoral (side) fins to offset their weight. Their dorsal (top) fin is used to generate the horizontal forces needed for control and turning. However, both captive and wild great hammerhead sharks tend to swim rolled partway onto their sides. The reason for this unusual behavior is hydrodynamic – it is more efficient for the shark. Unlike other species, the great hammerhead has a dorsal fin that is longer than its pectoral fins. By tipping sideways, the shark effectively creates a larger lifting span and is able to induce less drag than when it swims upright. Models show that swimming on their sides requires ~8% less energy than swimming upright! (Image credit: N. Payne et al., source)

Watch on fuckyeahfluiddynamics.tumblr.com

One of the most impressive cycling techniques for drag reduction on a rider is the lead-out train that delivers a sprinter to the finish line. No current team is better at this than HTC-Highroad. Watch for them in the white and yellow from about ~4:00 in the above video.

The lead-out train begins 5 km or so before the line, with the entire team in a line at the front of the peloton with the sprinter in the final position. The rider at the front will ride for as long and hard as he can, ensuring that the pace is such that no riders from the main field are able to pull ahead. This accelerates the sprinter to higher speeds while sheltering him in the wake of the rest of the team.

One by one, the riders of the team will do their time at the front, expending their energy while protecting the sprinter. The final lead-out rider will be sprinting a few hundred meters from the finishing line; at this point the sprinter in the back may be riding 70 kph while enjoying protection from the wind. Finally, with the finish line in sight, he will swing out around his lead-out man and go all out for the line. Sprinters can hit speeds of nearly 80 kph in these short bursts.

FYFD is celebrating the Tour de France with a weeklong exploration of the fluid dynamics of cycling. See previous posts on drafting in the peloton, and pacelining and echelons.


In cycling, a small group of riders often leave the protection of the peloton in a breakaway. These riders will often spend 80% or more of a stage or race outside of the peloton, trying to reach the finish line before they’re caught. Because the pressure drag is so draining on a lone cyclist, it’s vital that breakaway riders work together. When the wind comes predominantly from the front or back, riders will form one or two lines, riding with their wheels within a foot of one another (see ~0:23). This paceline rotates so that every rider takes a turn at the front, bearing the brunt of the effort while other cyclists recover in their wake, where they experience less drag.

If the wind blows predominantly across the riders, they will form a diagonal line with the frontmost rider rotating behind for shelter from the wind after a pull. This drag reduction technique is called an echelon (see ~1:40). As seen above, for experienced riders the echelon can protect individuals even in bike-stealingly high winds.

FYFD is celebrating the Tour de France with a weeklong exploration of the fluid dynamics of cycling. See part one on drafting in the peloton.