drag reduction

10 “Spinoffs of Tomorrow” You Can License for Your Business

The job of the our Technology Transfer Program is pretty straight-forward – bring NASA technology down to Earth. But, what does that actually mean? We’re glad you asked! We transfer the cool inventions NASA scientists develop for missions and license them to American businesses and entrepreneurs. And that is where the magic happens: those business-savvy licensees then create goods and products using our NASA tech. Once it hits the market, it becomes a “NASA Spinoff.”

If you’re imagining that sounds like a nightmare of paperwork and bureaucracy, think again. Our new automated “ATLAS” system helps you license your tech in no time — online and without any confusing forms or jargon.

So, sit back and browse this list of NASA tech ripe for the picking (well, licensing.) When you find something you like, follow the links below to apply for a license today! You can also browse the rest of our patent portfolio - full of hundreds of available technologies – by visiting technology.nasa.gov.

1. Soil Remediation with Plant-Fungal Combinations

Ahh, fungus. It’s fun to say and fun to eat—if you are a mushroom fan. But, did you know it can play a crucial role in helping trees grow in contaminated soil? Scientists at our Ames Research Center discovered that a special type of the fungus among us called “Ectomycorrhizal” (or EM for short) can help enhance the growth of trees in areas that have been damaged, such as those from oil spills.

2. Preliminary Research Aerodynamic Design to Lower Drag

When it comes to aircraft, drag can be, well…a drag. Luckily, innovators at our Armstrong Flight Research Center are experimenting with a new wing design that removes adverse yaw (or unwanted twisting) and dramatically increases aircraft efficiency by reducing drag. Known as the “Preliminary Research Aerodynamic Design to Lower Drag (PRANDTL-D)” wing, this design addresses integrated bending moments and lift to achieve drag reduction.

3. Advancements in Nanomaterials

What do aircraft, batteries, and furniture have in common? They can ALL be improved with our nanomaterials.  Nanomaterials are very tiny materials that often have unique optical, electrical and mechanical properties. Innovators at NASA’s Glenn Research Center have developed a suite of materials and methods to optimize the performance of nanomaterials by making them tougher and easier to process. This useful stuff can also help electronics, fuel cells and textiles.

4. Green Precision Cleaning

Industrial cleaning is hard work. It can also be expensive when you have to bring in chemicals to get things squeaky. Enter “Green Precision Cleaning,” which uses the nitrogen bubbles in water instead. The bubbles act as a scrubbing agent to clean equipment. Goddard Space Flight Center scientists developed this system for cleaning tubing and piping that significantly reduces cost and carbon consumption. Deionized water (or water that has been treated to remove most of its mineral ions) takes the place of costlier isopropyl alcohol (IPA) and also leaves no waste, which cuts out the pricey process of disposal. The cleaning system quickly and precisely removes all foreign matter from tubing and piping.

5. Self-Contained Device to Isolate Biological Samples

When it comes to working in space, smaller is always better. Innovators at our Johnson Space Center have developed a self-contained device for isolating microscopic materials like DNA, RNA, proteins, and cells without using pipettes or centrifuges. Think of this technology like a small briefcase full of what you need to isolate genetic material from organisms and microorganisms for analysis away from the lab. The device is also leak-proof, so users are protected from chemical hazards—which is good news for astronauts and Earth-bound scientists alike.

6. Portable, Rapid, Quiet Drill

When it comes to “bringing the boom,” NASA does it better than anyone. But sometimes, we know it’s better to keep the decibels low.
That’s why innovators at NASA’s Jet Propulsion Laboratory have developed a new handheld drilling device, suitable for a variety of operations, that is portable, rapid and quiet. Noise from drilling operations often becomes problematic because of the location or time of operations. Nighttime drilling can be particularly bothersome and the use of hearing protection in the high-noise areas may be difficult in some instances due to space restrictions or local hazards. This drill also weighs less than five pounds – talk about portable power.  

7. Damage Detection System for Flat Surfaces

The ability to detect damage to surfaces can be crucial, especially on a sealed environment that sustains human life or critical equipment. Enter Kennedy Space Center’s damage detection system for flat composite surfaces.
The system is made up of layered composite material, with some of those layers containing the detection system imbedded right in.
Besides one day potentially keeping humans safe on Mars, this tech can also be used on aircrafts, military shelters, inflatable structures and more.

8. Sucrose-Treated Carbon Nanotube and Graphene Yarns and Sheets

We all know what a spoonful of sugar is capable of. But, who knew it could help make some materials stronger? Innovators at NASA’s Langley Research Center did! They use dehydrated sucrose to create yarns and woven sheets of carbon nanotubes and graphene.

The resulting materials are lightweight and strong. Sucrose is inexpensive and readily available, making the process cost-effective. Makes you look at the sweet substance a little differently, doesn’t it?

9. Ultrasonic Stir Welding

NASA scientists needed to find a way to friction weld that would be gentler on their welding equipment. Meet our next tech, ultrasonic stir welding.

NASA’s Marshall Space Flight Center engineers developed ultrasonic stir welding to join large pieces of very high-strength, high-melting-temperature metals such as titanium and Inconel. The addition of ultrasonic energy reduces damaging forces to the stir rod (or the piece of the unit that vibrates so fast, it joins the welding material together), extending its life. The technology also leaves behind a smoother, higher-quality weld.

10. A Field Deployable PiezoElectric Gravimeter (PEG)

It’s important to know that the fuel pumping into rockets has remained fully liquid or if a harmful chemical is leaking out of its container. But each of those things, and the many other places sensors are routinely used, tends to require a specially designed, one-use device.

That can result in time-consuming and costly cycles of design, test and build, since there is no real standardized sensor that can be adapted and used more widely.

To meet this need, the PiezoElectric Gravimeter (PEG) was developed to provide a sensing system and method that can serve as the foundation for a wide variety of sensing applications.

See anything your business could use? Did anything inspire you to start your own company? If so, head to our website at technology.nasa.gov to check them out.

When you’ve found what you need, click, “Apply Now!” Our licensing system, ATLAS, will guide you through the rest.

If the items on this round-up didn’t grab you, that’s ok, too. We have hundreds of other technologies available and ready to license on our website.

And if you want to learn more about the technologies already being used all around you, visit spinoff.nasa.gov.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

The Subaru WRX STI Type RA NBR Special set a new lap record for a four-door saloon at the famous 12.8-mile Nürburgring Nordschleife race track, achieving a time of 6:57.5. The time was achieved using the Nürburgring timing equipment and was officially verified by track officials.

The WRX STI Type RA NBR Special was designed to show the capabilities of the Subaru saloon and all-wheel drive. This time attack car has set lap records at the Isle of Man TT, the Goodwood Festival of Speed hill climb (where it was also 3rd fastest overall) and now it has conquered the 12.8-mile (20.6-kilometre) lap around the Nürburgring Nordschleife. The Prodrive-built time attack car is equipped with a rally spec 2.0-litre Boxer engine and Subaru Symmetrical All-Wheel Drive.

The WRX STI Type RA NBR Special is a custom-built race car built by Prodrive using a standard 2017 WRX STI with a full roll cage welded into the standard WRX STI body for added strength and stiffness.

It has a modified 2.0-litre Subaru WRC-spec boxer engine with a 75-mm intake, and the turbo runs at 250 psi of boost. This produces more than 600 horsepower at 8,500 rpm. Prodrive calculated the top speed at the ’Ring would be 179 mph at 8,500 rpm in top gear.

The car has 9-inch-wide slick tires all around. It uses a WRC gearbox with an automatic clutch, modified with hydraulics for paddle-shift operation. Shift times are some of the fastest at 20 to 25 milliseconds.

A redesigned aero-package, different than last year’s TT car set up, delivers improved handling and top speed on the NBR Special. At top speed, the whole package produces about 295 kilograms of downforce. The design includes a Drag Reduction System rear wing similar to the technology found in Formula 1 cars. With its combined electric and hydraulic operation, the wing can deploy for full downforce/drag under braking or in fast turns and then open for less downforce/drag on long straights. The driver has full control of the DRS via a steering wheel mounted control taking less than 20 milliseconds to change position fully.


Wingtip devices are usually intended to improve the efficiency of fixed-wing aircraft. There are several types of wingtip devices, and although they function in different manners, the intended effect is always to reduce the aircraft’s drag by partial recovery of the tip vortex energy. Wingtip devices can also improve aircraft handling characteristics and enhance safety for following aircraft. Such devices increase the effective aspect ratio of a wing without materially increasing the wingspan. An extension of span would lower lift-induced drag, but would increase parasitic drag and would require boosting the strength and weight of the wing. At some point, there is no net benefit from further increased span. There may also be operational considerations that limit the allowable wingspan (e.g., available width at airport gates).

Wingtip devices increase the lift generated at the wingtip (by smoothing the airflow across the upper wing near the tip) and reduce the lift-induced drag caused by wingtip vortices, improving lift-to-drag ratio. This increases fuel efficiency in powered aircraft and increases cross-country speed in gliders, in both cases increasing range. U.S. Air Force studies indicate that a given improvement in fuel efficiency correlates directly with the causal increase in the aircraft’s lift-to-drag ratio.

The term “winglet” was previously used to describe an additional lifting surface on an aircraft, e.g., a short section between wheels on fixed undercarriage. Richard Whitcomb’s research in the 1970s at NASA first used winglet with its modern meaning referring to near-vertical extension of the wing tips. The upward angle (or cant) of the winglet, its inward or outward angle (or toe), as well as its size and shape are critical for correct performance and are unique in each application. The wingtip vortex, which rotates around from below the wing, strikes the cambered surface of the winglet, generating a force that angles inward and slightly forward, analogous to a sailboat sailing close hauled. The winglet converts some of the otherwise-wasted energy in the wingtip vortex to an apparent thrust. This small contribution can be worthwhile over the aircraft’s lifetime, provided the benefit offsets the cost of installing and maintaining the winglets.

Another potential benefit of winglets is that they reduce the strength of wingtip vortices, which trail behind the plane and pose a hazard to other aircraft. Minimum spacing requirements between aircraft operations at airports is largely dictated by these factors. Aircraft are classified by weight (e.g. “Light,” “Heavy,” etc.) because the vortex strength grows with the aircraft lift coefficient, and thus, the associated turbulence is greatest at low speed and high weight.

The drag reduction permitted by winglets can also reduce the required takeoff distance.

Winglets and wing fences also increase efficiency by reducing vortex interference with laminar airflow near the tips of the wing, by ‘moving’ the confluence of low-pressure (over wing) and high-pressure (under wing) air away from the surface of the wing. Wingtip vortices create turbulence, originating at the leading edge of the wingtip and propagating backwards and inboard. This turbulence 'delaminates’ the airflow over a small triangular section of the outboard wing, which destroys lift in that area. The fence/winglet drives the area where the vortex forms upward away from the wing surface, since the center of the resulting vortex is now at the tip of the winglet.

Aircraft such as the Airbus A340 and the Boeing 747-400 use winglets. Other designs such as some versions of the Boeing 777 and the Boeing 747-8 omit them in favor of raked wingtips. Large winglets such as those seen on Boeing 737 aircraft equipped with blended winglets are most useful during short-distance flights, where increased climb performance offsets increased drag.

Innovation at 100

Air travel, spaceflight, robotic solar-system missions: science fiction to those alive at the turn of the 20th century became science fact to those living in the 21st. 

America’s aerospace future has been literally made at our Langley Research Center by the best and brightest the country can offer. Here are some of the many highlights from a century of ingenuity and invention.

Making the Modern Airplane

In times of peace and war, Langley helped to create a better airplane, including unique wing shapes, sturdier structures, the first engine cowlings, and drag cleanup that enabled the Allies to win World War II.

In 1938 Langley mounted the navy’s Brewster XF2A-1 Buffalo in the Full-Scale Tunnel for drag reduction studies.

Wind Goes to Work

Langley broke new ground in aeronautical research with a suite of first-of-their-kind wind tunnels that led to numerous advances in commercial, military and vertical flight, such as helicopters and other rotorcraft. 

Airflow turning vanes in Langley’s 16-Foot Transonic Tunnel.

Aeronautics Breakthroughs

Aviation Hall of Famer Richard Whitcomb’s area rule made practical jet flight a reality and, thanks to his development of winglets and the supercritical wing, enabled jets to save fuel and fly more efficiently.

Richard Whitcomb examines a model aircraft incorporating his area rule.

Making Space

Langley researchers laid the foundation for the U.S. manned space program, played a critical role in the Mercury, Gemini and Apollo programs, and developed the lunar-orbit rendezvous concept that made the Moon landing possible.

Neil Armstrong trained for the historic Apollo 11 mission at the Lunar Landing Research Facility,

Safer Air Above and Below

Langley research into robust aircraft design and construction, runway safety grooving, wind shear, airspace management and lightning protection has aimed to minimize, even eliminate air-travel mishaps

NASA’s Boeing 737 as it approached a thunderstorm during microburst wind shear research in Colorado in 1992.

Tracking Earth from Aloft

Development by Langley of a variety of satellite-borne instrumentation has enabled real-time monitoring of planet-wide atmospheric chemistry, air quality, upper-atmosphere ozone concentrations, the effects of clouds and air-suspended particles on climate, and other conditions affecting Earth’s biosphere.

Crucial Shuttle Contributions

Among a number of vital contributions to the creation of the U.S. fleet of space shuttles, Langley developed preliminary shuttle designs and conducted 60,000 hours of wind tunnel tests to analyze aerodynamic forces affecting shuttle launch, flight and landing.

Space Shuttle model in the Langley wind tunnel.

Decidedly Digital

Helping aeronautics transition from analog to digital, Langley has worked on aircraft controls, glass cockpits, computer-aided synthetic vision and a variety of safety-enhancing onboard sensors to better monitor conditions while airborne and on the ground.

Aerospace research engineer Kyle Ellis uses computer-aided synthetic vision technology in a flight deck simulator.

Fast, Faster, Fastest

Langley continues to study ways to make higher-speed air travel a reality, from about twice the speed of sound – supersonic – to multiple times: hypersonic.

Langley continues to study ways to make higher-speed air travel a reality, from about twice the speed of sound – supersonic – to multiple times: hypersonic.

Safer Space Sojourns

Protecting astronauts from harm is the aim of Langley’s work on the Orion Launch Abort System, while its work on materials and structures for lightweight and affordable space transportation and habitation will keep future space travelers safe.

Unmasking the Red Planet

Beginning with its leadership role in Project Viking, Langley has helped to unmask Martian mysteries with a to-date involvement in seven Mars missions, with participation in more likely to come.

First image of Mars taken by Viking 1 Lander.

Touchdown Without Terror

Langley’s continued work on advanced entry, descent and landing systems aims to make touchdowns on future planetary missions routinely safe and secure.

Artist concept of NASA’s Hypersonic Inflatable Aerodynamic Decelerator - an entry, descent and landing technology.

Going Green

Helping to create environmentally benign aeronautical technologies has been a focus of Langley research, including concepts to reduce drag, weight, fuel consumption, emissions, and lessen noise.

Intrepid Inventors

With a history developing next-generation composite structures and components, Langley innovators continue to garner awards for a variety of aerospace inventions with a wide array of terrestrial applications.

Boron Nitride Nanotubes: High performance, multi-use nanotube material.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

Like many sharks, the great hammerhead shark is negatively buoyant, meaning that, absent other forces, it would sink in water. To compensate, sharks generate lift with their pectoral (side) fins to offset their weight. Their dorsal (top) fin is used to generate the horizontal forces needed for control and turning. However, both captive and wild great hammerhead sharks tend to swim rolled partway onto their sides. The reason for this unusual behavior is hydrodynamic – it is more efficient for the shark. Unlike other species, the great hammerhead has a dorsal fin that is longer than its pectoral fins. By tipping sideways, the shark effectively creates a larger lifting span and is able to induce less drag than when it swims upright. Models show that swimming on their sides requires ~8% less energy than swimming upright! (Image credit: N. Payne et al., source)


Cephalopods like the octopus or squid are some of the fastest marine creatures, able to accelerate to many body lengths per second by jetting water behind them. Part of what makes its high speed achievable, though, is the way the animal changes its shape. In general, drag forces are proportional to the square of velocity, meaning that doubling the velocity increases the drag by a factor of four. The energy necessary to overcome such large drag increases generally prevents marine animals from going very fast (compared to those of us used to moving through air!) But drag is also proportional to frontal area. Like the bio-inspired rocket in the video above, jetting cephalopods begin their acceleration from a bulbous shape and then shrink their exposed area as they accelerate. Not only does this shape change help mitigate increases in drag due to velocity, it prevents flow from separating around the animal, shielding it from more drag. The result is incredible acceleration using only a simple jet for thrust. For example, the octopus-like rocket in the video above reaches velocities of more than ten body lengths per second in less than a second. (Video credit: G. Weymouth et al.)