curves-2d

Curva piana  ideata e usata dal geometra greco Diocle vissuto intorno al 180a.C. per risolvere il problema della duplicazione del cubo.

Altra costruzione: 

Per la costruzione di questa Cissoide si procede in questo modo: consideriamo una circonferenza e una tangente alla circonferenza; una retta passante per O e intersecante: la circonferenza in K e la tangente in M; sulla retta un segmento OK = MP;  la Cissoide di Diocle è il luogo descritto dal punto P al variare di M sulla retta tangente alla circonferenza.

Curva piana  ideata e usata dal geometra greco Diocle vissuto intorno al 180a.C. per risolvere il problema della duplicazione del cubo.

Costruzione: 

Per la costruzione della Cissoide si procede in questo modo: si tracciano 2 rette parallele e si fissa su una di queste un punto O; si considera la semiretta di origine O passante per un punto P (vedi immagine nell'applet); da P si traccia la perpendicolare fino ad incontrare in Q l'altra retta; da Q si traccia la perpendicolare alla semiretta di origine O e passante per P ; indicando con M l'intersezione tra la semiretta e la perpendicolare, la Cissoide è il luogo tracciato da M.