chandra xray

The cosmic swirl of giant waves in an enormous reservoir of glowing hot gas are visible in this enhanced X-ray image from the Chandra Observatory. The frame spans over 1 million light-years across the center of the nearby Perseus Galaxy Cluster. With temperatures in the tens of millions of degrees, the gas glows brightly in X-rays. Computer simulations can reproduce details of the structures sloshing through the Perseus cluster’s X-ray hot gas, including the remarkable concave bay seen below and left of center. About 200,000 light-years across, twice the size of the Milky Way, the bay’s formation indicates that Perseus itself was likely grazed by a smaller galaxy cluster billions of years ago.

Image Credit:  NASA, CXC, GSFC, Stephen Walker, et al.

4

Galactic Center of Our Milky Way

The Hubble Space Telescope, the Spitzer Space Telescope, and the Chandra X-ray Observatory – collaborated to produce an unprecedented image of the central region of our Milky Way galaxy.

Observations using infrared light and X-ray light see through the obscuring dust and reveal the intense activity near the galactic core. The center of the galaxy is located within the bright white region in the upper portion of the image. The entire image covers about one-half a degree, about the same angular width as the full moon.

Each telescope’s contribution is presented in a different color:

  • Yellow represents the near-infrared observations of Hubble. They outline the energetic regions where stars are being born as well as reveal hundreds of thousands of stars.
  • Red represents the infrared observations of Spitzer. The radiation and winds from stars create glowing dust clouds that exhibit complex structures from compact, spherical globules to long, stringy filaments.
  • Blue and violet represents the X-ray observations of Chandra. X-rays are emitted by gas heated to millions of degrees by stellar explosions and by outflows from the supermassive black hole in the galaxy’s center. The bright blue blob toward the bottom of the full field image is emission from a double star system containing either a neutron star or a black hole.
4

The above images are spectacular representations of what Chandra X-Ray Telescope has brought to the astronomy table. The earth’s atmosphere filters out a great majority of x-rays, therefore, by having a telescope in orbit outside of the atmosphere, it gives astronomers a new perspective on the makeup of various celestial bodies. As seen in these images, high energy particles often emit high levels of x-rays which are typically invisible to us if we simply take a picture in the visible spectrum. Having an x-ray observatory like Chandra opens a brand new (beautiful) window to the universe.

This is the magnificent Cartwheel Galaxy as seen from four different observatories: the Chandra X-ray Observatory (purple); the Galaxy Evolution Explorer satellite (ultraviolet/blue); the Hubble Space Telescope (visible/green); the Spitzer Space Telescope (infrared/red). The unusual shape of the Cartwheel Galaxy is likely due to a collision with one of the smaller galaxies on the lower left several hundred million years ago.

The smaller galaxy produced compression waves in the gas of the Cartwheel as it plunged through it. These compression waves trigger bursts of star formation. The most recent star burst has lit up the Cartwheel’s rim, which has a diameter larger than that of the Milky Way galaxy, with millions of bright young stars.

(Image Credit: Composite: NASA/JPL/Caltech/P.Appleton et al. X-ray: NASA/CXC/A.Wolter & G.Trinchieri et al.)