chandra x ray observatory

Crab Nebula in technicolor! This new composite view combines data from five different telescopes, showing the celestial object in multiple kinds of light.

The video starts with a composite image of the Crab Nebula, a supernova remnant that was assembled by combining data from five telescopes spanning nearly the entire breadth of the electromagnetic spectrum: the Very Large Array, the Spitzer Space Telescope, the Hubble Space Telescope, the XMM-Newton Observatory, and the Chandra X-ray Observatory. 

It then dissolves to the red-colored radio-light view that shows how a neutron star’s fierce “wind” of charged particles from the central neutron star energized the nebula, causing it to emit the radio waves. 

The yellow-colored infrared image includes the glow of dust particles absorbing ultraviolet and visible light. 

The green-colored Hubble visible-light image offers a very sharp view of hot filamentary structures that permeate this nebula. 

The blue-colored ultraviolet image and the purple-colored X-ray image shows the effect of an energetic cloud of electrons driven by a rapidly rotating neutron star at the center of the nebula.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

The cosmic swirl of giant waves in an enormous reservoir of glowing hot gas are visible in this enhanced X-ray image from the Chandra Observatory. The frame spans over 1 million light-years across the center of the nearby Perseus Galaxy Cluster. With temperatures in the tens of millions of degrees, the gas glows brightly in X-rays. Computer simulations can reproduce details of the structures sloshing through the Perseus cluster’s X-ray hot gas, including the remarkable concave bay seen below and left of center. About 200,000 light-years across, twice the size of the Milky Way, the bay’s formation indicates that Perseus itself was likely grazed by a smaller galaxy cluster billions of years ago.

Image Credit:  NASA, CXC, GSFC, Stephen Walker, et al.

Illusions in the Cosmic Clouds: Pareidolia is the psychological phenomenon where people see recognizable shapes in clouds, rock formations, or otherwise unrelated objects or data. There are many examples of this phenomenon on Earth and in space.

When an image from NASAs Chandra X-ray Observatory of PSR B1509-58 a spinning neutron star surrounded by a cloud of energetic particles was released in 2009, it quickly gained attention because many saw a hand-like structure in the X-ray emission.

In a new image of the system, X-rays from Chandra in gold are seen along with infrared data from NASAs Wide-field Infrared Survey Explorer telescope in red, green and blue. Pareidolia may strike again as some people report seeing a shape of a face in WISEs infrared data. What do you see?

NASAs Nuclear Spectroscopic Telescope Array, or NuSTAR, also took a picture of the neutron star nebula in 2014, using higher-energy X-rays than Chandra.

PSR B1509-58 is about 17,000 light-years from Earth.

JPL, a division of the California Institute of Technology in Pasadena, manages the WISE mission for NASA. NASAs Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandras science and flight operations.

Image Credit: X-ray: NASA/CXC/SAO; Infrared: NASA/JPL-Caltech

js

boom-kaka-laka  asked:

Hey :) I don't want to be annoying or anything but I was wondering if you could recommend some books or websites were I could learn more about space.. I have huge interest in it but I don't really know much about anything from the astro field >_<

Since space always has a bunch of crazy shit going on in it, I’ll just take a bunch of random bookmarked links I have and throw them at you!

Books:Videos:Space Image Galleries: Cool Online Programs:Random Articles:
2

This composite NASA image of the spiral galaxy M81, located about 12 million light years away, includes X-ray data from the Chandra X-ray Observatory (blue), optical data from the Hubble Space Telescope (green), infrared data from the Spitzer Space Telescope (pink) and ultraviolet data from GALEX (purple). The inset shows a close-up of the Chandra image. At the center of M81 is a supermassive black hole that is about 70 million times more massive than the Sun.

A new study using data from Chandra and ground-based telescopes, combined with detailed theoretical models, shows that the supermassive black hole in M81 feeds just like stellar mass black holes, with masses of only about ten times that of the Sun. This discovery supports the implication of Einstein’s relativity theory that black holes of all sizes have similar properties, and will be useful for predicting the properties of a conjectured new class of black holes.

In addition to Chandra, three radio arrays (the Giant Meterwave Radio Telescope, the Very Large Array and the Very Long Baseline Array), two millimeter telescopes (the Plateau de Bure Interferometer and the Submillimeter Array), and Lick Observatory in the optical were used to monitor M81. These observations were made simultaneously to ensure that brightness variations because of changes in feeding rates did not confuse the results. Chandra is the only X-ray satellite able to isolate the faint X-rays of the black hole from the emission of the rest of the galaxy.

The supermassive black hole in M81 generates energy and radiation as it pulls gas in the central region of the galaxy inwards at high speed. Therefore, the model that Markoff and her colleagues used to study the black holes includes a faint disk of material spinning around the black hole. This structure would mainly produce X-rays and optical light. A region of hot gas around the black hole would be seen largely in ultraviolet and X-ray light. A large contribution to both the radio and X-ray light comes from jets generated by the black hole. Multiwavelength data is needed to disentangle these overlapping sources of light.

youtube

New Insights Into the Crab Nebula

Five observatories teamed up to spy on the Crab Nebula and the results are incredible. The VLA (radio) views are shown in red; Spitzer Space Telescope (infrared) in yellow; Hubble Space Telescope (visible) in green; XMM-Newton (ultraviolet) in blue; and Chandra X-ray Observatory (X-ray) in purple.

Keep reading

Astronomers have discovered what happens when the eruption from a supermassive black hole is swept up by the collision and merger of two galaxy clusters. This composite image contains X-rays from Chandra (blue), radio emission from the GMRT (red), and optical data from Subaru (red, green, and blue) of the colliding galaxy clusters called Abell 3411 and Abell 3412. These and other telescopes were used to analyze how the combination of these two powerful phenomena can create an extraordinary cosmic particle accelerator.

Image credit: X-ray: NASA/CXC/SAO/R. van Weeren et al; Optical: NAOJ/Subaru; Radio: NCRA/TIFR/GMRT/ Chandra X-ray Observatory

Observatories Combine to Crack Open the Crab Nebula

Astronomers have produced a highly detailed image of the Crab Nebula, by combining data from telescopes spanning nearly the entire breadth of the electromagnetic spectrum, from radio waves seen by the Karl G. Jansky Very Large Array (VLA) to the powerful X-ray glow as seen by the orbiting Chandra X-ray Observatory. And, in between that range of wavelengths, the Hubble Space Telescope’s crisp visible-light view, and the infrared perspective of the Spitzer Space Telescope.

The Crab Nebula, the result of a bright supernova explosion seen by Chinese and other astronomers in the year 1054, is 6,500 light-years from Earth. At its center is a super-dense neutron star, rotating once every 33 milliseconds, shooting out rotating lighthouse-like beams of radio waves and light – a pulsar (the bright dot at image center). The nebula’s intricate shape is caused by a complex interplay of the pulsar, a fast-moving wind of particles coming from the pulsar, and material originally ejected by the supernova explosion and by the star itself before the explosion.

This image combines data from five different telescopes: the VLA (radio) in red; Spitzer Space Telescope (infrared) in yellow; Hubble Space Telescope (visible) in green; XMM-Newton (ultraviolet) in blue; and Chandra X-ray Observatory (X-ray) in purple.

The new VLA, Hubble, and Chandra observations all were made at nearly the same time in November of 2012. A team of scientists led by Gloria Dubner of the Institute of Astronomy and Physics (IAFE), the National Council of Scientific Research (CONICET), and the University of Buenos Aires in Argentina then made a thorough analysis of the newly revealed details in a quest to gain new insights into the complex physics of the object. They are reporting their findings in the Astrophysical Journal.

“Comparing these new images, made at different wavelengths, is providing us with a wealth of new detail about the Crab Nebula. Though the Crab has been studied extensively for years, we still have much to learn about it,” Dubner said.

The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington.

NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra’s science and flight operations.

NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the Spitzer Space Telescope for NASA’s Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at Caltech in Pasadena. Spacecraft operations are based at Lockheed Martin Space Systems Company, Littleton, Colorado. Data are archived at the Infrared Science Archive housed at the Infrared Processing and Analysis Center at Caltech. Caltech manages JPL for NASA.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

IMAGE….In the summer of the year 1054 AD, Chinese astronomers saw a new “guest star,” that appeared six times brighter than Venus. So bright in fact, it could be seen during the daytime for several months.

This “guest star” was forgotten about until 700 years later with the advent of telescopes. Astronomers saw a tentacle-like nebula in the place of the vanished star and called it the Crab Nebula. Today we know it as the expanding gaseous remnant from a star that self-detonated as a supernova, briefly shining as brightly as 400 million suns. The explosion took place 6,500 light-years away. If the blast had instead happened 50 light-years away it would have irradiated Earth, wiping out most life forms.

In the late 1960s astronomers discovered the crushed heart of the doomed star, an ultra-dense neutron star that is a dynamo of intense magnetic field and radiation energizing the nebula. Astronomers therefore need to study the Crab Nebula across a broad range of electromagnetic radiation, from X-rays to radio waves.

This image combines data from five different telescopes: the VLA (radio) in red; Spitzer Space Telescope (infrared) in yellow; Hubble Space Telescope (visible) in green; XMM-Newton (ultraviolet) in blue; and Chandra X-ray Observatory (X-ray) in purple.

The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C.

NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA’s Science Mission Directorate in Washington, D.C. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra’s science and flight operations.

NASA’s Jet Propulsion Laboratory, Pasadena, California, manages the Spitzer Space Telescope for NASA’s Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at Caltech in Pasadena, California. Spacecraft operations are based at Lockheed Martin Space Systems Company, Littleton, Colorado. Data are archived at the Infrared Science Archive housed at the Infrared Processing and Analysis Center at Caltech. Caltech manages JPL for NASA.

Infrared, X-ray & Optical Images of Centaurus A

Centaurus A is the fifth brightest galaxy in the sky – making it an ideal target for amateur astronomers – and is famous for the dust lane across its middle and a giant jet blasting away from the supermassive black hole at its center.  Cen A is an active galaxy about 12 million light years from Earth.

Credit: X-ray: NASA/CXC/SAO; Optical: Rolf Olsen; Infrared: NASA/JPL-Caltech

The Milky Way’s close neighbor, Andromeda, features a dominant source of high-energy X-ray emission, but its identity was mysterious until now. As reported in a new study, NASA’s NuSTAR (Nuclear Spectroscopic Telescope Array) mission has pinpointed an object responsible for this high-energy radiation.

The object, called Swift J0042.6+4112, is a possible pulsar, the dense remnant of a dead star that is highly magnetized and spinning, researchers say. This interpretation is based on its emission in high-energy X-rays, which NuSTAR is uniquely capable of measuring. The object’s spectrum is very similar to known pulsars in the Milky Way.

It is likely in a binary system, in which material from a stellar companion gets pulled onto the pulsar, spewing high-energy radiation as the material heats up.

“We didn’t know what it was until we looked at it with NuSTAR,” said Mihoko Yukita, lead author of a study about the object, based at Johns Hopkins University in Baltimore. The study is published in The Astrophysical Journal.

This candidate pulsar is shown as a blue dot in a NuSTAR X-ray image of Andromeda (also called M31), where the color blue is chosen to represent the highest-energy X-rays. It appears brighter in high-energy X-rays than anything else in the galaxy.

The study brings together many different observations of the object from various spacecraft. In 2013, NASA’s Swift satellite reported it as a high-energy source, but its classification was unknown, as there are many objects emitting low energy X-rays in the region. The lower-energy X-ray emission from the object turns out to be a source first identified in the 1970s by NASA’s Einstein Observatory. Other spacecraft, such as NASA’s Chandra X-ray Observatory and ESA’s XMM-Newton had also detected it. However, it wasn’t until the new study by NuSTAR, aided by supporting Swift satellite data, that researchers realized it was the same object as this likely pulsar that dominates the high energy X-ray light of Andromeda.

Traditionally, astronomers have thought that actively feeding black holes, which are more massive than pulsars, usually dominate the high-energy X-ray light in galaxies. As gas spirals closer and closer to the black hole in a structure called an accretion disk, this material gets heated to extremely high temperatures and gives off high-energy radiation. This pulsar, which has a lower mass than any of Andromeda’s black holes, is brighter at high energies than the galaxy’s entire black hole population.

Even the supermassive black hole in the center of Andromeda does not have significant high-energy X-ray emission associated with it. It is unexpected that a single pulsar would instead be dominating the galaxy in high-energy X-ray light.

“NuSTAR has made us realize the general importance of pulsar systems as X-ray-emitting components of galaxies, and the possibility that the high energy X-ray light of Andromeda is dominated by a single pulsar system only adds to this emerging picture,” said Ann Hornschemeier, co-author of the study and based at NASA’s Goddard Space Flight Center, Greenbelt, Maryland.

Andromeda is a spiral galaxy slightly larger than the Milky Way. It resides 2.5 million light-years from our own galaxy, which is considered very close, given the broader scale of the universe. Stargazers can see Andromeda without a telescope on dark, clear nights.

“Since we can’t get outside our galaxy and study it in an unbiased way, Andromeda is the closest thing we have to looking in a mirror,” Hornschemeier said.

NuSTAR is a Small Explorer mission led by Caltech and managed by JPL for NASA’s Science Mission Directorate in Washington. NuSTAR was developed in partnership with the Danish Technical University and the Italian Space Agency (ASI). The spacecraft was built by Orbital Sciences Corp., Dulles, Virginia. NuSTAR’s mission operations center is at UC Berkeley, and the official data archive is at NASA’s High Energy Astrophysics Science Archive Research Center. ASI provides the mission’s ground station and a mirror archive. JPL is managed by Caltech for NASA.

For

2

SCIENTISTS FIND GIANT WAVE ROLLING THROUGH THE PERSEUS GALAXY CLUSTER

Combining data from NASA’s Chandra X-ray Observatory with radio observations and computer simulations, an international team of scientists has discovered a vast wave of hot gas in the nearby Perseus galaxy cluster. Spanning some 200,000 light-years, the wave is about twice the size of our own Milky Way galaxy.

The researchers say the wave formed billions of years ago, after a small galaxy cluster grazed Perseus and caused its vast supply of gas to slosh around an enormous volume of space.

“Perseus is one of the most massive nearby clusters and the brightest one in X-rays, so Chandra data provide us with unparalleled detail,” said lead scientist Stephen Walker at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The wave we’ve identified is associated with the flyby of a smaller cluster, which shows that the merger activity that produced these giant structures is still ongoing.”

A paper describing the findings appears in the June 2017 issue of the journal Monthly Notices of the Royal Astronomical Society and is available online.

Galaxy clusters are the largest structures bound by gravity in the universe today. Some 11 million light-years across and located about 240 million light-years away, the Perseus galaxy cluster is named for its host constellation. Like all galaxy clusters, most of its observable matter takes the form of a pervasive gas averaging tens of millions of degrees, so hot it only glows in X-rays.

Chandra observations have revealed a variety of structures in this gas, from vast bubbles blown by the supermassive black hole in the cluster’s central galaxy, NGC 1275, to an enigmatic concave feature known as the “bay.”

The bay’s concave shape couldn’t have formed through bubbles launched by the black hole. Radio observations using the Karl G. Jansky Very Large Array in central New Mexico show that the bay structure produces no emission, the opposite of what scientists would expect for features associated with black hole activity. In addition, standard models of sloshing gas typically produced structures that arc in the wrong direction.

Walker and his colleagues turned to existing Chandra observations of the Perseus cluster to further investigate the bay. They combined a total of 10.4 days of high-resolution data with 5.8 days of wide-field observations at energies between 700 and 7,000 electron volts. For comparison, visible light has energies between about two and three electron volts. The scientists then filtered the Chandra data to highlight the edges of structures and reveal subtle details.

Next, they compared the edge-enhanced Perseus image to computer simulations of merging galaxy clusters developed by John ZuHone, an astrophysicist at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts. The simulations were run on the Pleiades supercomputer operated by the NASA Advanced Supercomputing Division at Ames Research Center in Silicon Valley, California. Although he was not involved in this study, ZuHone collected his simulations into an online catalog to aid astronomers studying galaxy clusters.

“Galaxy cluster mergers represent the latest stage of structure formation in the cosmos,” ZuHone said. “Hydrodynamic simulations of merging clusters allow us to produce features in the hot gas and tune physical parameters, such as the magnetic field. Then we can attempt to match the detailed characteristics of the structures we observe in X-rays.”

One simulation seemed to explain the formation of the bay. In it, gas in a large cluster similar to Perseus has settled into two components, a “cold” central region with temperatures around 54 million degrees Fahrenheit (30 million Celsius) and a surrounding zone where the gas is three times hotter. Then a small galaxy cluster containing about a thousand times the mass of the Milky Way skirts the larger cluster, missing its center by around 650,000 light-years.

The flyby creates a gravitational disturbance that churns up the gas like cream stirred into coffee, creating an expanding spiral of cold gas. After about 2.5 billion years, when the gas has risen nearly 500,000 light-years from the center, vast waves form and roll at its periphery for hundreds of millions of years before dissipating.

These waves are giant versions of Kelvin-Helmholtz waves, which show up wherever there’s a velocity difference across the interface of two fluids, such as wind blowing over water. They can be found in the ocean, in cloud formations on Earth and other planets, in plasma near Earth, and even on the Sun.

“We think the bay feature we see in Perseus is part of a Kelvin-Helmholtz wave, perhaps the largest one yet identified, that formed in much the same way as the simulation shows,” Walker said. “We have also identified similar features in two other galaxy clusters, Centaurus and Abell 1795.”

The researchers also found that the size of the waves corresponds to the strength of the cluster’s magnetic field. If it’s too weak, the waves reach much larger sizes than those observed. If too strong, they don’t form at all. This study allowed astronomers to probe the average magnetic field throughout the entire volume of these clusters, a measurement that is impossible to make by any other means.

What is a black hole?

When a star runs out of nuclear fuel, it will collapse. If the core, or central region, of the star has a mass that is greater than three Suns, no known nuclear forces can prevent the core from forming a deep gravitational warp in space called a black hole.

A black hole does not have a surface in the usual sense of the word. There is simply a region, or boundary, in space around a black hole beyond which we cannot see.

This boundary is called the event horizon. Anything that passes beyond the event horizon is doomed to be crushed as it descends ever deeper into the gravitational well of the black hole. No visible light, nor X-rays, nor any other form of electromagnetic radiation, nor any particle, no matter how energetic, can escape. The radius of the event horizon (proportional to the mass) is very small, only 30 kilometers for a non-spinning black hole with the mass of 10 Suns.

Can astronomers see a black hole? Not directly. The only way to find one is to use circumstantial evidence. Observations must imply that a sufficiently large amount of matter is compressed into a sufficiently small region of space so that no other explanation is possible. For stellar black holes, this means observing the orbital acceleration of a star as it orbits its unseen companion in a double or binary star system.

Searching for black holes is tricky business. One way to locate them has been to study X-ray binary systems. These systems consist of a visible star in close orbit around an invisible companion star which may be a neutron star or black hole. The companion star pulls gas away from the visible star.

As this gas forms a flattened disk, it swirls toward the companion. Friction caused by collisions between the particles in the gas heats them to extreme temperatures and they produce X-rays that flicker or vary in intensity within a second.

Many bright X-ray binary sources have been discovered in our galaxy and nearby galaxies. In about ten of these systems, the rapid orbital velocity of the visible star indicates that the unseen companion is a black hole. The X-rays in these objects are produced by particles very close to the event horizon. In less than a second after they give off their X-rays, they disappear beyond the event horizon.

However, not all the matter in the disk around a black hole is doomed to fall into the black hole. In many black hole systems, some of the gas escapes as a hot wind that is blown away from the disk at high speeds. Even more dramatic are the high-energy jets that radio and X-ray observations show exploding away from some stellar black holes. These jets can move at nearly the speed of light in tight beams and travel several light years before slowing down and fading away.

Do black holes grow when matter falls into them? Yes, the mass of the black hole increases by an amount equal to the amount of mass it captures. The radius of the event horizon also increases by about 3 kilometers for every solar mass that it swallows. A black hole in the center of a galaxy, where stars are densely packed, may grow to the mass of a billion Suns and become what is known as a supermassive black hole.

3

This Friday at the Science & Nature show I will be debuting the last two prints in my Space Shuttle series (previous shuttles HERE) celebrating the Challenger and Columbia. These two incredible shuttles and their crews completed 36 successful missions and combined spent nearly an entire year in space. Some highlights of their missions included carrying the first woman to space (Challenger) *EDIT* First American woman to space (thanks @rocketplane for the correction)** and deploying the Chandra X-Ray Observatory (Columbia). I’ll have these prints along with a very small supply of my original 3 shuttle prints at the show this Friday. SCIENCE & NATURE // December 4th @ 7PM // Gallery 1988 East 7021 Melrose Ave Los Angeles CA 90038