california institute of technology

Illusions in the Cosmic Clouds: Pareidolia is the psychological phenomenon where people see recognizable shapes in clouds, rock formations, or otherwise unrelated objects or data. There are many examples of this phenomenon on Earth and in space.

When an image from NASAs Chandra X-ray Observatory of PSR B1509-58 a spinning neutron star surrounded by a cloud of energetic particles was released in 2009, it quickly gained attention because many saw a hand-like structure in the X-ray emission.

In a new image of the system, X-rays from Chandra in gold are seen along with infrared data from NASAs Wide-field Infrared Survey Explorer telescope in red, green and blue. Pareidolia may strike again as some people report seeing a shape of a face in WISEs infrared data. What do you see?

NASAs Nuclear Spectroscopic Telescope Array, or NuSTAR, also took a picture of the neutron star nebula in 2014, using higher-energy X-rays than Chandra.

PSR B1509-58 is about 17,000 light-years from Earth.

JPL, a division of the California Institute of Technology in Pasadena, manages the WISE mission for NASA. NASAs Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandras science and flight operations.

Image Credit: X-ray: NASA/CXC/SAO; Infrared: NASA/JPL-Caltech

js
Planet Nine hypothesis supported by new evidence

Last year, the existence of an unknown planet in our Solar system was announced. However, this hypothesis was subsequently called into question as biases in the observational data were detected. Now Spanish astronomers have used a novel technique to analyse the orbits of the so-called extreme trans-Neptunian objects and, once again, they point out that there is something perturbing them: a planet located at a distance between 300 to 400 times the Earth-Sun separation.

Scientists continue to argue about the existence of a ninth planet within our Solar System. At the beginning of 2016, researchers from the California Institute of Technology (Caltech, USA) announced that they had evidence of the existence of this object, located at an average distance of 700 AU or astronomical units (700 times the Earth-Sun separation) and with a mass ten times that of Earth.

Keep reading

NASA SELECTS MISSION TO STUDY THE CHURNING CHAOS IN OUR MILKY WAY & BEYOND

NASA has selected a science mission that will measure emissions from the interstellar medium, which is the cosmic material found between stars. This data will help scientists determine the life cycle of interstellar gas in our Milky Way galaxy, witness the formation and destruction of star-forming clouds, and understand the dynamics and gas flow in the vicinity of the center of our galaxy.

The Galactic/Extragalactic ULDB Spectroscopic Terahertz Observatory (GUSTO) mission, led by principal investigator of the University of Arizona, Christopher Walker, will fly an ultralong-duration balloon (ULDB) carrying a telescope with carbon, oxygen and nitrogen emission line detectors. This unique combination of data will provide the spectral and spatial resolution information needed for Walker and his team to untangle the complexities of the interstellar medium, and map out large sections of the plane of our Milky Way galaxy and the nearby galaxy known as the Large Magellanic Cloud.

“GUSTO will provide the first complete study of all phases of the stellar life cycle, from the formation of molecular clouds, through star birth and evolution, to the formation of gas clouds and the re-initiation of the cycle,” said Paul Hertz, astrophysics division director in the Science Mission Directorate in Washington. “NASA has a great history of launching observatories in the Astrophysics Explorers Program with new and unique observational capabilities. GUSTO continues that tradition.”

The mission is targeted for launch in 2021 from McMurdo, Antarctica, and is expected to stay in the air between 100 to 170 days, depending on weather conditions. It will cost approximately $40 million, including the balloon launch funding and the cost of post-launch operations and data analysis.

The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, is providing the mission operations, and the balloon platform where the instruments are mounted, known as the gondola. The University of Arizona in Tucson will provide the GUSTO telescope and instrument, which will incorporate detector technologies from NASA’s Jet Propulsion Laboratory in Pasadena, California, the Massachusetts Institute of Technology in Cambridge, Arizona State University in Tempe, and SRON Netherlands Institute for Space Research.

NASA’s Astrophysics Explorers Program requested proposals for mission of opportunity investigations in September 2014. A panel of NASA and other scientists and engineers reviewed two mission of opportunity concept studies selected from the eight proposals submitted at that time, and NASA has determined that GUSTO has the best potential for excellent science return with a feasible development plan.



7

G E N E R A T I O N   K I L L   A U   |   T h e   M a r t i a n

         ↳ meet the crew

  • CDR. Nathaniel Fick; Fick graduated with honors from the US Naval Academy. He will be the youngest commander to lead a mission to Mars.
  • Brad Colbert; Colbert graduated high school at sixteen, and won NASA’s largest hackathon at seventeen before moving on to MIT for dual undergraduate degrees in math and computer science. 
  • Ray Person; Person applied to the NASA Astronaut Candidate Program and was selected for his outstanding academic accomplishments, dedication and service to community, and an exemplary record of professional achievements.
  • Walt Hasser; Hasser holds a master’s degree in both chemistry and astrophysics as well as a doctorate in chemistry from the California Institute of Technology. A noted scientist and experience astronaut, he will serve as the navigtor on the Hermes.
  • Antonio Espera; Espera earned a bachelor of science in astronautical engineering at the United States Air Force Academy. He now joins the Ares 3 crew as pilot after eleven decorated years of service in the United States Air Force.
  • DR. Timothy Bryan; Bryan graduated cum laude from the Yale School of Medicine. Since joining NASA, Timothy Bryan has made two trips to SpaceXStation and completed five spacewalks (EVAs.)

The low angle of sunlight along the slim crescent of Saturn’s moon Enceladus (313 miles or 504 kilometers across) highlights the many fractures and furrows on its icy surface.

This view looks toward the Saturn-facing hemisphere of Enceladus, which is dimly illuminated in the image above by sunlight reflected off Saturn. North on Enceladus is up and rotated 14 degrees to the left. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Dec. 26, 2016.

The view was obtained at a distance of approximately 104,000 miles (168,000 kilometers) from Enceladus. Image scale is 3,303 feet (1 kilometer) per pixel.

The Cassini mission is a cooperative project of NASA, ESA (the European Space Agency) and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colorado.

Credit: NASA/JPL-Caltech/Space Science Institute

Cassini

John, oh John. Why Princeton? (Thunderbirds Headcannon)

So was reading fanfics, as usual, and I had a burning question. 

Why are writers convinced that John went to Princeton, Harvard, or MIT? 

The first, okay, has one of the best astrophysics programs in the United States. The last, okay, is one of the best tech schools in the United States. The middle, okay, is just a huge name. 

But you know what school has all three of those, AND HOME TO THE JET PROPULSION LABORATORY, NASA’S HOME OF SPACE ROBOTICS?

CALTECH. 

California Institute of Technology. 

Imagine John interning with scientists and engineers, working on real NASA projects as an undergrad. Imagine John thriving in a community focused on the sciences. Imagine Gordon and Alan visiting, trying to drag him to the beach, but he prefers his air-conditioned labs. Imagine John visiting the (old) tech hub, Silicon Valley on a day trip over the weekend. 

Just, John Tracy at CalTech. 

NEW EVIDENCE IN SUPPORT OF THE PLANET NINE HYPOTHESIS

** Synopsis: Last year, the existence of an unknown planet in our solar system was announced. However, this hypothesis was subsequently called into question as biases in the observational data were detected. Now Spanish astronomers have used a novel technique to analyse the orbits of the so-called extreme trans-Neptunian objects and, once again, they point out that there is something perturbing them: a planet located at a distance between 300 to 400 times the Earth-Sun separation. **

Scientists continue to argue about the existence of a ninth planet within our solar system. At the beginning of 2016, researchers from the California Institute of Technology (Caltech, USA) announced that they had evidence of the existence of this object, located at an average distance of 700 AU or astronomical units (700 times the Earth-Sun separation) and with a mass ten times that of the Earth. Their calculations were motivated by the peculiar distribution of the orbits found for the trans-Neptunian objects (TNO) of the Kuiper belt, which apparently revealed the presence of a Planet Nine or X in the confines of the solar system.

However, scientists from the Canadian-French-Hawaiian project OSSOS detected biases in their own observations of the orbits of the TNOs, which had been systematically directed towards the same regions of the sky, and considered that other groups, including the Caltech group, may be experiencing the same issues. According to these scientists, it is not necessary to propose the existence of a massive perturber (a Planet Nine) to explain these observations, as these are compatible with a random distribution of orbits.

Now, however, two astronomers from the Complutense University of Madrid have applied a new technique, less exposed to observational bias, to study a special type of trans-Neptunian objects: the extreme ones (ETNOs, located at average distances greater than 150 AU and that never cross Neptune’s orbit). For the first time, the distances from their nodes to the Sun have been analysed, and the results, published in the journal ‘MNRAS: Letters,’ once again indicate that there is a planet beyond Pluto.

The nodes are the two points at which the orbit of an ETNO, or any other celestial body, crosses the plane of the solar system. These are the precise points where the probability of interacting with other objects is the largest, and therefore, at these points, the ETNOs may experience a drastic change in their orbits or even a collision.

Like the Comets that Interact with Jupiter

“If there is nothing to perturb them, the nodes of these extreme trans-Neptunian objects should be uniformly distributed, as there is nothing for them to avoid, but if there are one or more perturbers, two situations may arise,” explains Carlos de la Fuente Marcos, one of the authors, to SINC. “One possibility is that the ETNOs are stable, and in this case they would tend to have their nodes away from the path of possible perturbers, he adds, but if they are unstable they would behave as the comets that interact with Jupiter do, that is tending to have one of the nodes close to the orbit of the hypothetical perturber.”

Using calculations and data mining, the Spanish astronomers have found that the nodes of the 28 ETNOs analysed (and the 24 extreme Centaurs with average distances from the Sun of more than 150 AU) are clustered in certain ranges of distances from the Sun; furthermore, they have found a correlation, where none should exist, between the positions of the nodes and the inclination, one of the parameters which defines the orientation of the orbits of these icy objects in space.

“Assuming that the ETNOs are dynamically similar to the comets that interact with Jupiter, we interpret these results as signs of the presence of a planet that is actively interacting with them in a range of distances from 300 to 400 AU,” says De la Fuente Marcos, who emphasizes: “We believe that what we are seeing here cannot be attributed to the presence of observational bias.”

Until now, studies that challenged the existence of Planet Nine using the data available for these trans-Neptunian objects argued that there had been systematic errors linked to the orientations of the orbits (defined by three angles), due to the way in which the observations had been made. Nevertheless, the nodal distances mainly depend on the size and shape of the orbit, parameters which are relatively free of observational bias.

“It is the first time that the nodes have been used to try to understand the dynamics of the ETNOs,” the co-author points out, as he admits that discovering more ETNOs (at the moment, only 28 are known) would permit the proposed scenario to be confirmed and subsequently constrain the orbit of the unknown planet via the analysis of the distribution of the nodes.

The authors note that their study supports the existence of a planetary object within the range of parameters considered both in the Planet Nine hypothesis of Mike Brown and Konstantin Batygin from Caltech, and in the original one proposed in 2014 by Scott Sheppard from the Carnegie Institute and Chadwick Trujillo from the University of North Arizona; in addition to following the lines of their own earlier studies (the latest led by the Instituto de Astrofísica de Canarias), which suggested that there is more than one unknown planet in our solar system.

Is There Also a Planet Ten?

De la Fuente Marcos explains that the hypothetical Planet Nine suggested in this study has nothing to do with another possible planet or planetoid situated much closer to us, and hinted at by other recent findings. Also applying data mining to the orbits of the TNOs of the Kuiper Belt, astronomers Kathryn Volk and Renu Malhotra from the University of Arizona (USA) have found that the plane on which these objects orbit the Sun is slightly warped, a fact that could be explained if there is a perturber of the size of Mars at 60 AU from the Sun.

“Given the current definition of planet, this other mysterious object may not be a true planet, even if it has a size similar to that of the Earth, as it could be surrounded by huge asteroids or dwarf planets,” explains the Spanish astronomer, who goes on to say: “In any case, we are convinced that Volk and Malhotra’s work has found solid evidence of the presence of a massive body beyond the so-called Kuiper cliff, the furthest point of the trans-Neptunian belt, at some 50 AU from the Sun, and we hope to be able to present soon a new work which also supports its existence.”

Sunlight truly has come to Saturn’s north pole. The whole northern region is bathed in sunlight in this view from late 2016, feeble though the light may be at Saturn’s distant domain in the solar system.

The hexagon-shaped jet-stream is fully illuminated here. In this image, the planet appears darker in regions where the cloud deck is lower, such the region interior to the hexagon. Mission experts on Saturn’s atmosphere are taking advantage of the season and Cassini’s favorable viewing geometry to study this and other weather patterns as Saturn’s northern hemisphere approaches Summer solstice.

This view looks toward the sunlit side of the rings from about 51 degrees above the ring plane. The image was taken with the Cassini spacecraft wide-angle camera on Sept. 9, 2016 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 728 nanometers.

The view was obtained at a distance of approximately 750,000 miles (1.2 million kilometers) from Saturn. Image scale is 46 miles (74 kilometers) per pixel.

The Cassini mission is a cooperative project of NASA, ESA (the European Space Agency) and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colorado.

Image Credit: NASA/JPL-Caltech/Space Science Institute, Cassini

Time And Space

en.wikipedia.org
2016 in science - Wikipedia

A few samples:

7 January: Mathematicians, as part of the Great Internet Mersenne Prime Search, report the discovery of a new prime number: 274,207,281 − 1.

14 January:  Astronomers report that ASASSN-15lh, first observed in June 2015, is likely the brightest supernova ever detected. Twice as luminous as the previous record holder, at peak detonation it was as bright as 570 billion Suns

18 January: Light-activated nanoparticles able to kill over 90% of antibiotic-resistant bacteria are demonstrated at the University of Colorado Boulder.

20 January: Astronomers at the California Institute of Technology present the strongest evidence yet that a ninth planet is present in the Solar System, orbiting the Sun every 15,000 years.

26 January: Researchers at the University of Washington announce a new handheld, pen-sized microscope that could identify cancer cells in doctor’s offices and operating rooms.

27 January: Google announces a breakthrough in artificial intelligence with a program able to beat the European champion of the board game Go.

28 January: Research into the nature of time by Griffith University’s Centre for Quantum Dynamics shows how an asymmetry for time reversal might be responsible for making the universe move forward in time.

11 February: Scientists at the LIGO, Virgo and GEO600 announce the first direct detection of a gravitational wave predicted by the general relativity theory of Albert Einstein.

13 April: A quadriplegic man, Ian Burkhart from Ohio, is able to perform complex functional movements with his fingers after a chip was implanted in his brain.

20 June:  China introduces the Sunway TaihuLight, the world’s fastest supercomputer, capable of 93 petaflops and a peak performance of 125 petaflops.

30 June:The first known death caused by a self-driving car is disclosed by Tesla Motors.

4 July: NASA scientists announce the arrival of the Juno spacecraft at the planet Jupiter.

5 July: China completes construction on the world’s largest radio telescope.

2 May:  A study in PNAS concludes that Earth may be home to 1 trillion species, with 99.999 percent remaining undiscovered.

10 May: NASA’s Kepler mission verifies 1,284 new exoplanets – the single largest finding of planets to date.

18 May: At the I/O developer conference, Google reveals it has been working on a new chip, known as the Tensor Processing Unit (TPU), which delivers “an order of magnitude higher performance per watt than all commercially available GPUs and FPGA.

3 June June: NASA and ESA jointly announce that the Universe is expanding 5% to 9% faster than previously thought, after using the Hubble Space Telescope to measure the distance to stars in 19 galaxies beyond the Milky Way.

27 July:  Neonicotinoids, the world’s most widely used insecticide, are found to reduce bee sperm counts by almost 40%, as well as cutting the lifespan of bee drones by a third.

29 July:The seafloor in the Clarion-Clipperton Zone – an area in the Pacific Ocean being targeted for deep-sea mining – is found to contain an abundance and diversity of life, with more than half of the species collected being new to science.

4 August: A team at the University of Oxford achieves a quantum logic gate with record-breaking 99.9% precision, reaching the benchmark required to build a quantum computer.

5 August: Research by Imperial College London suggests that a new form of light can be created by binding it to a single electron, combining the properties of both.

11 August: The Greenland shark (Somniosus microcephalus) is found to be the longest-lived vertebrate, able to reach a lifespan of nearly 400 years.

10 September:The second largest meteorite ever found is exhumed near Gancedo, Argentina. It weighs 30 tonnes and fell to Earth around 2000 BC.

16 September: The development of 1 terabit-per-second transmission rates over optical fiber is announced by Nokia Bell Labs, Deutsche Telekom T-Labs and the Technical University of Munich.

21 September: Scientists report that, based on human DNA genetic studies, all non-African humans in the world today can be traced to a single population that exited Africa between 50,000 and 80,000 years ago.

11 October: Scientists identify the maximum human lifespan at an average age of 115, with an absolute upper limit of 125 years old.

4 November: Researchers in the UK announce a genetically modified "superwheat” that increases the efficiency of photosynthesis to boost yields by 20 to 40 percent. Field trials are expected in 2017.

8 November: Lab-grown mini lungs, developed from stem cells, are successfully transplanted into mice by researchers at the University of Michigan Health System.

13 November: The University of East Anglia reports that global emissions of CO2 did not grow in 2015 and are projected to rise only slightly in 2016, marking three years of almost no growth.

28 November: Scientists at the International Union of Pure and Applied Chemistry officially recognizes names for four new chemical elements: Nihonium, Nh, 113; Moscovium, Mc, 115; Tennessine, Ts, 117 and Oganesson, Og, 118.

15 December: Scientists use a new form of gene therapy to partially reverse aging in mice. After six weeks of treatment, the animals looked younger, had straighter spines and better cardiovascular health, healed quicker when injured, and lived 30% longer.

22 December: A study finds the VSV-EBOV vaccine against the Ebola virus between 70–100% effective, and thus making it the first proven vaccine against the disease. 

and a lot more…

Like a cosmic bull’s-eye, Enceladus and Tethys line up almost perfectly for Cassini’s cameras.

Since the two moons are not only aligned, but also at relatively similar distances from Cassini, the apparent sizes in this image are a good approximation of the relative sizes of Enceladus (313 miles or 504 kilometers across) and Tethys (660 miles or 1,062 kilometers across).

This view looks toward the unilluminated side of the rings from 0.34 degrees below the ring plane. The image was taken in red light with the Cassini spacecraft narrow-angle camera on Sept. 24, 2015.

The image was obtained at a distance of approximately 1.3 million miles (2.1 million kilometers) from Enceladus. Image scale on Enceladus is 7 miles (12 kilometers) per pixel. Tethys was at a distance of 1.6 million miles (2.6 million kilometers) with a pixel scale of 10 miles (16 kilometers) per pixel.

The Cassini mission is a cooperative project of NASA, ESA (the European Space Agency) and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colorado.

Credit: NASA/JPL-Caltech/Space Science Institute

Time And Space

Astronomers are homing in on the whereabouts of a hidden giant planet in our solar system, and could discover the unseen beast in roughly a year.

The hunt is on to find “Planet Nine”—a large undiscovered world, perhaps 10 times as massive as Earth and four times its size—that scientists think could be lurking in the outer solar system. After Konstantin Batygin and Mike Brown, two planetary scientists from the California Institute of Technology, presented evidence for its existence this January, other teams have searched for further proof by analyzing archived images and proposing new observations to find it with the world’s largest telescopes.

Just this month, evidence from the Cassini spacecraft orbiting Saturn helped close in on the missing planet. Many experts suspect that within as little as a year someone will spot the unseen world, which would be a monumental discovery that changes the way we view our solar system and our place in the cosmos. “Evidence is mounting that something unusual is out there.


This false-color view from NASA’s Cassini spacecraft shows clouds in Saturn’s northern hemisphere. The view was produced by space imaging enthusiast Kevin M. Gill, who also happens to be an engineer at NASA’s Jet Propulsion Laboratory.

The view was made using images taken by Cassini’s wide-angle camera on July 20, 2016, using a combination of spectral filters sensitive to infrared light at 750, 727 and 619 nanometers.

Filters like these, which are sensitive to absorption and scattering of sunlight by methane in Saturn’s atmosphere, have been useful throughout Cassini’s mission for determining the structure and depth of cloud features in the atmosphere.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colorado.

Object Names:Infrared Saturn Clouds

Image Type:  Astronomical

Credit: NASA/JPL-Caltech/Space Science Institute/Kevin M. Gill/Cassini

Time And Space

Ava Helen Pauling (1903-1981) was a peace activist involved in numerous causes, particularly concerning the rights of women and minorities, as well as international peace. She introduced her husband, Linus Pauling, to the field of peace studies, for which he received the Nobel Prize in 1962.

She studied home economics and chemistry, and went on to work as a laboratory assistant at the California Institute of Technology. She was a member of multiple women’s rights groups, and helped organize the “Women’s Peace March” in Europe. She also campaigned heavily for nuclear disarmament, which eventually led to the end of above-ground testing of nuclear weapons.

Saturn’s icy moon Mimas is dwarfed by the planet’s enormous rings.

Because Mimas (near lower left) appears tiny by comparison, it might seem that the rings would be far more massive, but this is not the case. Scientists think the rings are no more than a few times as massive as Mimas, or perhaps just a fraction of Mimas’ mass. Cassini is expected to determine the mass of Saturn’s rings to within just a few hundredths of Mimas’ mass as the mission winds down by tracking radio signals from the spacecraft as it flies close to the rings.andnbsp;andnbsp;

The rings, which are made of small, icy particles spread over a vast area, are extremely thin ‘“ generally no thicker than the height of a house. Thus, despite their giant proportions, the rings contain a surprisingly small amount of material.

Mimas is 246 miles (396 kilometers) wide.

This view looks toward the sunlit side of the rings from about 6 degrees above the ring plane. The image was taken in red light with the Cassini spacecraft wide-angle camera on July 21, 2016.

The view was obtained at a distance of approximately 564,000 miles (907,000 kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 31 degrees. Image scale is 34 miles (54 kilometers) per pixel.

The Cassini mission is a cooperative project of NASA, ESA (the European Space Agency) and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colorado.

Credit: NASA/JPL-Caltech/Space Science Institute/Cassini

Time And Space

4

New Technique Lets Scientists See Through Whole Organisms

by Michael Keller

Seeing is believing when it comes to understanding how organisms work. For biologists trying to learn about what’s going on inside a body, one of the biggest obstacles is not being able to put their eyeballs on a part or system without other objects getting in the way. The answer is usually going in with one invasive tool or another, which ends up damaging or destroying the thing they’re trying to investigate. 

Now California Institute of Technology scientists say they have improved upon a solution to clearing up the picture. The technique builds on work that garnered widespread attention last year. In that effort, assistant professor of biology Viviana Gradinaru and her team used detergent and a polymer to make a rodent brain transparent for study in unprecedented detail. 

Keep reading

This image, acquired on Nov. 24, 2015 by theHigh Resolution Imaging Science Experiment (HiRISE) camera aboard NASA’s Mars Reconnaissance Orbiter, shows the western side of an elongated pit depression in the eastern Noctis Labyrinthus region of Mars. Along the pit’s upper wall is a light-toned layered deposit. Noctis Labyrinthus is a huge region of tectonically controlled valleys located at the western end of the Valles Marineris canyon system.

Spectra extracted from the light-toned deposit by the spacecraft’s Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument are consistent with the mineral jarosite, which is a potassium and iron hydrous sulfate. On Earth, jarosite can form in ore deposits or from alteration near volcanic vents, and indicates an oxidizing and acidic environment. The Opportunity rover discovered jarosite at the Meridiani Planum landing site, and jarosite has been found at several other locations on Mars, indicating that it is a common mineral on the Red Planet.

The jarosite-bearing deposit observed here could indicate acidic aqueous conditions within a volcanic system in Noctis Labyrinthus. Above the light-toned jarosite deposit is a mantle of finely layered darker-toned material. CRISM spectra do not indicate this upper darker-toned mantle is hydrated. The deposit appears to drape over the pre-existing topography, suggesting it represents an airfall deposit from either atmospheric dust or volcanic ash.

The University of Arizona, Tucson, operates HiRISE, which was built by Ball Aerospace & Technologies Corp., Boulder, Colo. NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter Project for NASA’s Science Mission Directorate, Washington.

Credit: NASA/JPL-Caltech/Univ. of Arizona/ Mars Reconnaissance Orbiter

Caption: Cathy Weitz

Time And Space