blue origin

youtube

Watch the first Spider-Man: Homecoming trailer

The first trailer for Marvel’s Spider-Man: Homecoming debuted giving us a clear look at how well leading man Tom Holland can handle himself in the ol’ red and blue pajamas (with original style wings!)

(muffled crying) i dont ever want to look at paintbrush/ms paint ever again

anyways here’s the December character design challenge for today, Aida the blue coral snake.  I’m keeping her. (they and she pronouns is what i use)

7

Via his very first tweet, Jeff Bezos announced that his spaceflight company has accomplished a historic first. It sent a rocket to the edge of space and then landed that rocket’s main fuselage gently on dry land.

Most things humans have sent into space are pushed up there by a disposable rocket. Once the rockets do their job, they fall back to earth, usually worse for wear. They have to be rebuilt each time (though sometimes their parts can be reused). That’s an expensive process, especially if you are a private company hoping to bring tourists to space. Virgin Atlantic, Elon Musk’s company SpaceX and Bezos’ Blue Origin all want to do just that. 

And now Blue Origin has paved the way, landing its rocket on its second attempt (the propulsion module was destroyed when they first tried). Here’s the video in full:

Elon Musk responded to the news on Twitter. He pointed out that it requires much greater speed to actually reach orbit than it does to reach the edge of space. (Phil Plait has some good analysis of the exchange over on his Bad Astronomy blog.)

Still, it’s a pretty amazing accomplishment. 

New technology that will change the world(s):

1. Ion Propulsion

(Image credit: NASA/JPL)

Technically not upcoming, ion propulsion is already a reality. Since it propels a spacecraft one particle at a time (as opposed to chemical propulsion, which explodes, generally, out the back), this propellant is hugely efficient.

The trick is what’s known to physicists as “specific impulse”. When a chemically propelled vehicle propels, it causes an explosion out the back, pushing the object forward. After exiting the vehicle however, the explosion immediately spreads in all directions, meaning that much of the energy of the explosion is lost on direction other than the one the spacecraft wishes to move.

Ion propulsion takes a long time to build speed but is so efficient that NASA’s Dawn spacecraft, being an ion propelled machine, is the first to be able to orbit multiple things in the solar system.

With ion propellant, a spacecraft may be able to even generate enough speed to allow for interstellar space exploration (meaning it could enable us to leave the Solar System). Though speculative, the possibility is undeniable.

2. Solar Sailing

(Image credit: NASA)

This technology is still controversial. The science is this:

Light has momentum. When light hits a highly reflective surface, the surface, is pushed. With gradual building of velocity, a spacecraft could easily attain vast speeds, again leading to aspirations toward interstellar exploration.

The advantage over ion propulsion though, is that this is exploration without propellant.

Such methods of discovery haven’t been relevant since our ancestors explored the Earth on boats driven by the wind.

Though the science is known, the engineering applications are still somewhat mysterious.

The momentum gained from a single photon is very small. The area of material needed for a solar sail that could carry something like a generation starship is many orders of magnitude larger than any tested solar sail concept. It’s arguable whether or not this technology would ultimately turn out to be the most efficient way to go.

That space exploration is expensive means that when someone bothers to pay for a launch, the first thing they would hate to do is lose their spacecraft because it turns out to not be able to propel itself. Most bankrollers of space travel tend to favor tried and true methods.

That said, the testing of solar sails is underway.

Agencies like NASA, JAXA and even the Planetary Society (holla) are currently undergoing mission preparation, or already have a mission underway, testing solar sails.

3. Renewable Rocketry

(Image credit: SpaceX)

This one’s a biggie.

Imagine, you buy a car. You go buy groceries, come home and then your car explodes.

Every. Single. Time.

Tell me, could you afford to buy a new car every week to buy groceries, or would you figure something else out?

Personally, I wouldn’t be able to travel by car. I just don’t have the money to buy a new one every week.

Space exploration faces the same problem. Rocket technology was mostly driven and invented by military ventures that didn’t care about getting the rocket back. In fact, for a military rocket - if you see it coming back at you then you’ve probably done something wrong.

New efforts are underway to change this.

Companies like SpaceX, Reaction Engines and Blue Origin are devising groundbreaking new technologies that are fundamentally different from the rocketry of yesteryear.

Soon SpaceX will be carrying people into low Earth orbit, dropping them off and returning to a landing pad in Florida.

Reaction Engines Ltd has invented a hybrid rocket engine which breathes oxygen from the atmosphere like a jet engine, then becomes a spacecraft engine once the air becomes too thin (meaning it needs a fraction of the fuel to get to space as most others).

Blue Origin plans on carrying tourists to the edge of space, with the rocket then returning to the landing pad softly on a plume of fire.

Each of these ventures has already proven their technology. They’re each on the road to implementing it now, with both SpaceX and Blue Origin currently launching with the technology.

Let me give you an idea of how much this is going to change humanity:

The cost of a SpaceX Falcon 9 launch is around $61 million.

Of that, the cost of fuel is about $200,000 (according to SpaceX).

In two years, SpaceX will be regularly launching seven astronauts at a time to the space station.

If all you need to pay for (approximately) is the cost of fuel (similar to fueling up your car), the cost of fuel between seven to get to space drops to a potential $28,500 or so.

Though still expensive, it’s easily within the bounds of startup companies to launch to space on commercial endeavors, meaning there will be private sector astronaut positions opening up in the very near future (they already exist actually).

Some vacations cost more than this. It’s within the bounds of reason to expect such entertainment prospects to carry into orbit.

Imagine: zero-gravity theme parks and floating hotels where you can watch, romantically as the Sun sets on the Earth below 16 times a day and you can see the Northern lights, lightning storms and the artificial spark of city lights spread out below you like some wondrous surreal painting.

With companies already developing espresso machines and cups for microgravity, and astronauts already testing greenhouses that grow vegetables in orbit, it seems inevitable that humanity is on the cusp of realizing the experience of the final frontier.


(More technologies to come in a later post)