The Invisible Galaxy

A new form of diffuse galaxy has been discovered inside the Coma Cluster. This place is made 99.99% of dark matter, totally invisible as it doesn’t interact with light.

The galaxy is known as Dragonfly 44 and was discovered by astronomers Pieter van Dokkum and his colleagues.

The way star systems orbit around the center of a galaxy is inexplicable with “normal” physics. To account for the velocity variations and patterns we need to add a new ingredient to the gravitational pot: dark matter.

Dragonfly 44 in particular has so few stars that were the dark matter to be taken away, the galaxy would fly apart the same way you’d go flying if the cord holding the swing to a swing set were severed.

(Image credit: NASA, JPL-CalTech and L. Jenkins

Powerful magnetic forces above an active region on the Sun twisted and pulled at a blob of plasma until it lost its connections and blew out into space (Mar. 26, 2014). The resultant swirling presented its own kind of graceful, almost ballet-like bends and sweeps. To offer some kind of size perspective that blob, before it broke away, was easily larger than several Earths. The event was observed in extreme ultraviolet light over about 5.5 hours. 

Credit: Solar Dynamics Observatory/NASA

A long-dead star

This Hubble Space Telescope image captures the remnants of a long-dead star. These rippling wisps of ionised gas, named DEM L316A, are located some 160 000 light-years away within one of the Milky Way’s closest galactic neighbours — the Large Magellanic Cloud (LMC).

The explosion that formed DEM L316A was an example of an especially energetic and bright variety of supernova, known as a Type Ia. Such supernova events are thought to occur when a white dwarf star steals more material than it can handle from a nearby companion, and becomes unbalanced. The result is a spectacular release of energy in the form of a bright, violent explosion, which ejects the star’s outer layers into the surrounding space at immense speeds. As this expelled gas travels through the interstellar material, it heats it up and ionise it, producing the faint glow that Hubble’s Wide Field Camera 3 has captured here.

Credit: ESA/Hubble & NASA, Y. Chu
The Observable Universe Is Actually Millions of Light-Years Smaller Than We Thought

One thing we’re always doing as a species is expanding our knowledge of the heavens. We send out probes, robots, satellites, spacecraft, all to map out and add to our ever-expanding picture of what the Universe looks like.

But what if that picture suddenly became smaller? That is exactly what happened when new data from the Planck satellite tightened our previous notions of the observable universe, shrinking its area by 0.7%.

If you’ve never realized, we don’t actually see all of the stars in the Universe. If we did, night time sky would be a whole lot brighter. Instead, we see everything within a particular radius, the particle horizon. Any particle of light emitted outside that particle horizon is too far to have reached us.

So if we want to know just how large the observable universe is, we just have to figure out the distance between us and that particle horizon, right?

As it turns out, not quite.

The universe, specifically spacetime, is continuously expanding, with points in the universe moving further apart. This not only changes the distance between objects but also how fast light is moving in the universe. 

The movement of spacetime has an effect on which photons reach us and can be observed.

So how do you calculate the radius? Back in 2003, scientists came up with an equation that took an event called “the recombination” as a reference point in the universe’s history. They combined that with the rate of the expansion of the universe and several other factors, in the end coming up with a number.

Back in 2003, that number was a radius of 45.66 billion light-years. Now, new data revealed a far more accurate number: 45.34 billion light-years.

“A difference of 320 million light-years might be peanuts on the cosmic scale, but it does make our knowable universe a little bit cozier,” Nick Tomasello from the University of the Sciences in Philadelphia writes over at Medium.

The study has been accepted for publication in an upcoming edition of Advances in Astrophysics.

Sunset at the Viking Lander 1 Site

On July 20, 1976, at 8:12 a.m. EDT, NASA received the signal that the Viking Lander 1 successfully reached the Martian surface. This major milestone represented the first time the United States successfully landed a vehicle on the surface of Mars, collecting an overwhelming amount of data that would soon be used in future NASA missions. Upon touchdown, Viking 1 took its first picture of the dusty and rocky surface and relayed the historic image back to Earthlings eagerly awaiting its arrival. Viking 1, and later Viking Orbiter 2, collected an abundance of high-resolution imagery and scientific data, blazing a trail that will one day take humans to Mars.

This color image of the Martian surface in the Chryse area was taken by Viking Lander 1, looking southwest, about 15 minutes before sunset on the evening of Aug. 21. 

Credit: NASA/JPL

What dark structures arise from the Pelican Nebula? Visible as a bird-shaped nebula toward the constellation of a bird (Cygnus, the Swan), the Pelican Nebula is a place dotted with newly formed stars but fouled with dark dust. These smoke-sized dust grains formed in the cool atmospheres of young stars and were dispersed by stellar winds and explosions. Impressive Herbig-Haro jets are seen emitted by a star on the right that is helping to destroy the light year-long dust pillar that contains it. The featured image was scientifically-colored to emphasize light emitted by small amounts of ionized nitrogen, oxygen, and sulfur in the nebula made predominantly of hydrogen and helium. The Pelican Nebula (IC 5067 and IC 5070) is about 2,000 light-years away and can be found with a small telescope to the northeast of the bright star Deneb.

Object Names: Pelican Nebula, IC 5067, IC 5070

Imagte Type: Astronomical

Credit: Larry Van Vleet (LVVASTRO)

Time And Space

NASA Astronomy Picture of the Day 2016 August 27 

Lunar Orbiter Earthset 

August 10th was the 50th anniversary of the launch of Lunar Orbiter 1. It was the first of five Lunar Orbiters intended to photograph the Moon’s surface to aid in the selection of future landing sites. That spacecraft’s camera captured the data used in this restored, high-resolution version of its historic first image of Earth from the Moon on August 23, 1966 while on its 16th lunar orbit. Hanging almost stationary in the sky when viewed from the lunar surface, Earth appears to be setting beyond the rugged lunar horizon from the perspective of the orbiting spacecraft. Two years later, the Apollo 8 crew would record a more famous scene in color: Earthrise from lunar orbit.


When it comes to real footage of UFOs film from the 1991 NASA STS-48 Discovery Space Shuttle mission definitely ranks as some of the best. This footage is real and well documented, and has been the subject of rigorous scientific investigation by multiple researchers and institutions.

The video above shows as many as a dozen objects moving in an unusual fashion. Apart from that, the most fascinating moment is when we see one object at a point near the horizon, as a flash occurs, the object shoots off into space. The objects speed before accelerating into space is estimated at 87,000 kph. After it changes direction and accelerates off into space it is estimated to of reached 340,000 kph in 2.2 seconds. Such an acceleration would produce 14,000 g of force.