This image was taken by the NASA/ESA Hubble Space Telescope’s Advanced Camera for Surveys (ACS) and shows a starburst galaxy named MCG+07-33-027. This galaxy lies some 300 million light-years away from us, and is currently experiencing an extraordinarily high rate of star formation — a starburst. 

Normal galaxies produce only a couple of new stars per year, but starburst galaxies can produce a hundred times more than that. As MCG+07-33-027 is seen face-on, the galaxy’s spiral arms and the bright star-forming regions within them are clearly visible and easy for astronomers to study.

In order to form newborn stars, the parent galaxy has to hold a large reservoir of gas, which is slowly depleted to spawn stars over time. For galaxies in a state of starburst, this intense period of star formation has to be triggered somehow — often this happens due to a collision with another galaxy. MCG+07-33-027, however, is special; while many galaxies are located within a large cluster of galaxies, MCG+07-33-027 is a field galaxy, which means it is rather isolated. Thus, the triggering of the starburst was most likely not due to a collision with a neighboring or passing galaxy and astronomers are still speculating about the cause. The bright object to the right of the galaxy is a foreground star in our own galaxy.

Object Names: MCG+07-33-027

Image credit: ESA/Hubble & NASA and N. Grogin (STScI)

Text credit: European Space Agency

Time And Space

space.com
80-Day Mock Mars Mission Begins Saturday in Utah
Seven explorers are about to embark upon an 80-day simulated mission to Mars.

Seven explorers are about to embark upon an 80-day simulated mission to Mars.

On Saturday (Sept. 24), the crewmembers of the Mars 80 mission — who hail from France, Japan, Russia, Australia, India and Canada — will begin work at the Mars Desert Research Station (MDRS), a facility in the Utah desert run by the nonprofit Mars Society.

The team will conduct a campaign of geology, microbiology and paleontology research in the area, operating under many of the same pressures and constraints that real-life Mars pioneers would face. Crewmembers will also test out spacesuit technologies and other gear that could help humanity get a foothold on the Red Planet, Mars Society representatives said.

Continue Reading.

8

Ask Ethan: What ‘Impossible Physics’ Would Be Possible With Warp Drive?

See ourselves as we were in the past. You can’t use warp drive to travel back in time, but if you can outrace the light that the Earth, Sun or Milky Way emitted so long ago, you can then “catch” it with the proper tools. Warp yourself to 65 million light years away, and with a good enough telescope, you can see the asteroid that wiped out the dinosaurs. Warp to 12,000 light years away, and you can see the end of the last ice age. Warp to 53 light years away and watch, for yourself, who really shot JFK. Or go back to 4.5 billion light years away, and watch our Solar System as it’s first being born. Warp drive, coupled with a powerful enough telescope, would suddenly become the ultimate forensic tool.”

When Star Trek debuted 50 years ago, we didn’t know that there would be regions of the Universe that were forever inaccessible to humanity, nor that there would be galaxies permanently unreachable to us, even if we managed to develop near-light-speed travel technology. Yet thanks to the existence and dominance of dark energy today, that’s exactly the case. The only workaround, it appears, would be to develop faster-than-light travel. But with the physical possibility of the Alcubierre solution to General Relativity, which would enable warp drive, this might actually render these distant, unreachable regions someday traversable. Not only that, but a whole slew of other “physical impossibilities” would suddenly become possible, enabling us to perform acts that physics without warp travel would simply never allow.

There’s a whole slew of fun physics to explore if negative mass/energy is real, and this week’s Ask Ethan goes after the biggest stakes of all!

NASA Astronomy Picture of the Day 2016 September 24 

Heart and Soul and Double Cluster 

This rich starfield spans almost 10 degrees across the sky toward the northern constellations Cassiopeia and Perseus. On the left, heart-shaped cosmic cloud IC 1805 and IC 1848 are popularly known as the Heart and Soul nebulae. Easy to spot on the right are star clusters NGC 869 and NGC 884 also known as h and Chi Perseii, or just the Double Cluster.

Heart and Soul, with their own embedded clusters of young stars a million or so years old, are each over 200 light-years across and 6 to 7 thousand light-years away. In fact, they are part of a large, active star forming complex sprawling along the Perseus spiral arm of our Milky Way Galaxy. The Double Cluster is located at about the same distance as the Heart and Soul nebulae. Separated by only a few hundred light-years, h and Chi Perseii are physically close together, and both clusters are estimated to be about 13 million years old. Their proximity and similar stellar ages suggest both clusters are likely a product of the same star-forming region.

Magellanic Clouds arch over ALMA

Two of our nearest galactic neighbours, the Large and Small Magellanic Clouds, hang in the night-time sky above an ALMA antenna in this captivating image.

ALMA, the largest ground-based astronomical project in existence, comprises 66 such high-precision antennas set high in the Chilean Andes on the Chajnantor plateau. By observing millimetre and submillimetre radiation, ALMA opens a window into the enigmatic cold Universe.

Credit: S. Otarola/ESO