astroglia

River of dreams

The hippocampus is a region of the mammalian brain involved in learning and memory. In this confocal microscopy image of an adult mouse’s hippocampus by Sandra Dieni of the Institute of Anatomy and Cell Biology at Albert-Ludwigs University in Germany, reactive astroglia (star-shaped cells that support neurons in the brain, here colored pale yellow) have proliferated and enlarged in response to neuronal activity over time.

Transforming Glial Cells into Neurons

For the first time, researchers have used a cocktail of small molecules to transform human brain cells, called astroglial cells, into functioning neurons for brain repair. The new technology opens the door to the future development of drugs that patients could take as pills to regenerate neurons and to restore brain functions lost after traumatic injuries, stroke, or diseases such as Alzheimer’s. Previous research, such as conventional stem cell therapy, requires brain surgery and therefore is much more invasive and prone to immune-system rejection and other problems.

The research is in Cell Stem Cell. (full access paywall)

2

Alie Caldwell (aka Alie Astrocyte on Twitter) recently got this beautiful tattoo as her personal interpretation of “We are star stuff”. It’s a combination of the constellation Orion and watercolor astrocytes (her favorite type of cell, as if you couldn’t tell from her Twitter name!). 

This gorgeous ink work was done by tattoo artist, Briana Sargent, who is based in San Diego, CA. 

- Summer

Scientists Identify Buphenyl as a Possible Drug for Alzheimer’s disease

Buphenyl, an FDA-approved medication for hyperammonemia, may protect memory and prevent the progression of Alzheimer’s disease. Hyperammonemia is a life-threatening condition that can affect patients at any age. It is caused by abnormal, high levels of ammonia in the blood.

Studies in mice with Alzheimer’s disease (AD) have shown that sodium phenylbutyrate, known as Buphenyl, successfully increases factors for neuronal growth and protects learning and memory, according to neurological researchers at the Rush University Medical Center.

Results from the National Institutes of Health funded study, recently were published in the Journal of Biological Chemistry.

“Understanding how the disease works is important to developing effective drugs that protect the brain and stop the progression of Alzheimer’s disease,” said Kalipada Pahan, PhD, the Floyd A. Davis professor of neurology at Rush and lead investigator of this study.

A family of proteins known as neurotrophic factors help in survival and function of neurons. Past research indicates that these proteins are drastically decreased in the brain of patients with Alzheimer’s disease (AD).

“Neurotrophic factor proteins could be increased in the brain by direct injection or gene delivery,” said Pahan. “However, using an oral medication to increase the level of these protein may be the best clinical option and a cost effective way to increase the level of these proteins directly in the brain.”

“Our study found that after oral feeding, Buphenyl enters into the brain, increases these beneficial proteins in the brain, protects neurons, and improves memory and learning in mice with AD-like pathology,” said Pahan.

In the brain of a patient with AD, two abnormal structures called plaques and tangles are prime suspects in damaging and killing nerve cells. While neurons die, other brain cells like astroglia do not die.

The study findings indicate that Buphenyl increases neurotrophic factors from astroglia. Buphenyl stimulates memory-related protein CREB (cyclic AMP response element-binding protein) using another protein known as Protein Kinase C (PKC) and increases neurotrophic factors in the brain.

“Now we need to translate this finding to the clinic and test Buphenyl in Alzheimer’s disease patients,” said Pahan. “If these results are replicated in Alzheimer’s disease patients, it would open up a promising avenue of treatment of this devastating neurodegenerative disease.”

New approach discovered for brain repair.

External image

For the first time, researchers have used a cocktail of small molecules to transform human brain cells, called astroglial cells, into functioning neurons for brain repair. Their results provide proof-of-principle that chemical reprogramming may one day lead to development of drugs that could…

Read more