anniversary of hubble space telescope

Located 20,000 light-years away in the constellation Carina, the young cluster and starforming region Westerlund 2 fills this cosmic scene. Captured with Hubble’s cameras in near-infrared and visible light, the stunning image is a celebration of the 25th anniversary of the launch of the Hubble Space Telescope on April 24, 1990. The cluster’s dense concentration of luminous, massive stars is about 10 light-years across. Strong winds and radiation from those massive young stars have sculpted and shaped the region’s gas and dust, into starforming pillars that point back to the central cluster. Red dots surrounding the bright stars are the cluster’s faint newborn stars, still within their natal gas and dust cocoons. But brighter blue stars scattered around are likely not in the Westerlund 2 cluster and instead lie in the foreground of the Hubble anniversary field of view.

Image Credit & Copyright: NASA, ESA

3

Goddard Space Flight Center has published a beautiful photo gallery commemorating Hubble’s 25th anniversary. Goddard installed the telescope’s instruments as well as performed final pre-launch checkouts before being shipped towards NASA’s Kennedy Space Center for launch.

In the first and third images above, Hubble is seen undergoing testing at Goddard. The first photo is Hubble in the Vertical Assembly and Test Area and the second is Hubble undergoing final assembly at Lockheed Martin’s Sunnyvale, California plant.

For more on Hubble’s 25th anniversary, click here.

Deal of the Day - One Available - As is- Fast Shipping! - Currently size 8 1/2 - Can be resized one more size up or down - If she is your moon and stars, this beautiful Lab Alexandrite and Diamond wedding set is perfect for the love of your life! Each moon and star are studded with tiny diamonds, and the beautiful purple color of the center stone will capture her heart - Comes with Jewelry Box and Cleaner. Contact us for this offer at Mail@LaurieSarahDesigns.com

The Hubble Space Telescope Turns 25!

Hubble scientists released this image of the star cluster Westerlund 2 to celebrate the telescope’s anniversary. ©NASA/ESA

Friday, April 24 marks the 25thanniversary of the Hubble Space Telescope. In its quarter-century of operation, Hubble has broadened our understanding of the cosmos like no instrument before it. To mark the occasion, we spoke with Department of Astrophysics Curator Dr. Michael Shara  who worked with the Hubble mission during his time at the Space Telescope Science Institute. Dr. Shara and his collaborators have logged over 1000 hours using the telescope for their work on star clusters, novae and supernovae.

Department of Astrophysics Curator Dr. Michael Shara. AMNH/D.Finnin

What did your work with the Hubble Space Telescope entail?

I joined the Space Telescope Science Institute (STSI) in 1982, eight years before the launch of Hubble. I was the project manager for the Guide Star Catalog that is used to target and calibrate the Hubble, and a few years after the telescope was launched, I was responsible for overseeing the peer review committees, which looked over proposals from researchers who wanted to use the telescope.

What was that experience like?

It was amazing to be able to see things coming in astronomy years before they were published. Reading hundreds of proposals and sitting in on deliberations about them was spectacular to watch.

How does it feel to look back on the launch of Hubble, twenty-five years out?

This anniversary is a joyous thing. Watching the deployment of Hubble in 1990 was an amazing, heart-stopping experience.

The so-called Pillars of Creation are one of the most iconic images Hubble has captured. ©NASA/ESA

Hubble’s mission didn’t start out exactly as planned, though, did it?

The first three years were bumpy. When word came back that spherical aberration was preventing Hubble from focusing properly, I think everyone working on the project had the same terrible feeling in the pit of their stomachs. The mission to repair it in 1993 was even more tense than the initial launch, but it was wildly successful, and for the last 22 years, the story of Hubble has been one triumph after another.

What are some things that stand out in Hubble’s history?

It’s hard to pick one, because Hubble has just been a discovery machine. It’s the most productive telescope in history, with thousands of refereed papers published using Hubble data so far. One that stands out is the discovery of dark energy by groups using the Hubble. That was a totally unexpected discovery that essentially lobbed a hand grenade into the world of modern physics.

We also learned much  about our own solar system. For example, we saw a comet smash into Jupiter, which helped us understand how frequently these events occur, and what an important role they have played in the development of our solar system.

What makes Hubble such a “discovery machine?”

Part of it is the Hubble Archives. Every image, every spectrum, and every measurement that Hubble takes is stored by STSI. That data is proprietary to the researchers who first gathered it for one year. After that period, the information is free and open to other researchers, as well as the general public. That means there are many astronomers using data in ways the people who gathered it could not have foreseen, like using images that looked for a phenomenon known as microlensing in galaxies to find large populations of novae in those same galaxies.

Jupiter’s moon, Io, passes in front of the gas giant, casting a shadow on its surface. ©NASA/ESA

How has this telescope changed since it was first deployed?

Every few years, Hubble has been upgraded, so it is a much more capable instrument today than when it was launched. The cameras are much more sensitive now, and the infrared and ultraviolet capabilities are vastly better than those available just a few years ago.

After 25 years, how much life does Hubble have left?

Well, the instruments, computers, and gyroscopes on Hubble are doing really well. It’s conceivable that it will be useful until 2021 or 2022. After that, because we don’t have a shuttle program to boost it into a higher orbit, Hubble’s orbit will decay to the point where it finally falls to Earth. But the body of data that Hubble has collected is unmatched, and that information will be put to use for decades to come, and maybe even a century from now.

Celestial Fireworks : The brilliant tapestry of young stars flaring to life resemble a glittering fireworks display in the 25th anniversary NASA Hubble Space Telescope image, released to commemorate a quarter century of exploring the solar system and beyond since its launch on April 24, 1990.

js

Happy Birthday Hubble Telescope!

A stellar nursery of about 3,000 stars called Westerlund 2 located about 20,000 light-years from the planet earth in the constellation Carina is shown in this image taken by the Hubble Space Telescope, released to celebrate the silver anniversary of Hubble’s launch

Westerlund 2

The giant star cluster is about 2 million years old and contains some of our galaxy’s hottest, brightest and most massive stars. Some of its heftiest stars unleash torrents of ultraviolet light and hurricane-force winds of charged particles etching into the enveloping hydrogen gas cloud.

The nebula reveals a fantasy landscape of pillars, ridges and valleys. The pillars, composed of dense gas and thought to be incubators for new stars, are a few light-years tall and point to the central star cluster. Other dense regions surround the pillars, including reddish-brown filaments of gas and dust.

The brilliant stars sculpt the gaseous terrain of the nebula and help create a successive generation of baby stars. When the stellar winds hit dense walls of gas, the shockwaves may spark a new torrent of star birth along the wall of the cavity. The red dots scattered throughout the landscape are a rich population of newly-forming stars still wrapped in their gas-and-dust cocoons. These tiny, faint stars are between 1 million and 2 million years old – relatively young stars – that have not yet ignited the hydrogen in their cores. The brilliant blue stars seen throughout the image are mostly foreground stars.

The image’s central region, which contains the star cluster, blends visible-light data taken by Hubble’s Advanced Camera for Surveys with near-infrared exposures taken by the Wide Field Camera 3. The surrounding region is composed of visible-light observations taken by the Advanced Camera for Surveys. Shades of red represent hydrogen and bluish-green hues are predominantly oxygen.

Celestial Fireworks : The brilliant tapestry of young stars flaring to life resemble a glittering fireworks display in the 25th anniversary NASA Hubble Space Telescope image, released to commemorate a quarter century of exploring the solar system and beyond since its launch on April 24, 1990.

js
Hubble celebrates 24th anniversary with infrared image of nearby star factory

In celebration of the 24th anniversary of the launch of NASA’s Hubble Space Telescope, astronomers have captured infrared-light images of a churning region of star birth 6,400 light-years away.

This colorful Hubble Space Telescope mosaic of a small portion of the Monkey Head Nebula unveils a collection of carved knots of gas and dust silhouetted against glowing gas. The cloud is sculpted by ultraviolet light eating into the cool hydrogen gas.

Image credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)

5

Mostly Mute Monday: The Milky Way’s Largest Star Cluster

“Within our Milky Way, one of the newest, largest concentrations of stars is found at the heart of the nebula RCW 49 in Carina, some 14–20,000 light years away in the galactic plane: the star cluster Westerlund 2. Containing over 3,000 unique stars (and possibly many more), the hottest blue giants burn at brightnesses millions of times our Sun’s luminosity, with blue reflected light mingling with the red signature of excited hydrogen.”

Recently imaged in great detail by the Hubble Space Telescope for its 25th anniversary, a huge slew of interesting features abound, including some of the hottest, youngest stars known and ridges, pillars and valleys formed by the UV radiation. Most interestingly, it may yet turn out to be the location of the next supernova visible from Earth within our galaxy.

Happy 26th birthday to NASA’s Hubble Space Telescope! 

In its more-than quarter century of operation, Hubble has broadened our understanding of the cosmos like no instrument before it. Last year, to mark the quarter century occasion, we spoke with Department of Astrophysics Curator Michael Shara, who worked with the Hubble mission during his time at the Space Telescope Science Institute. Dr. Shara and his collaborators have logged over 1,000 hours using the telescope for their work on star clusters, novae, and supernovae.

What did your work with the Hubble Space Telescope entail?
I joined the Space Telescope Science Institute (STSI) in 1982, eight years before the launch of Hubble. I was the project manager for the Guide Star Catalog that is used to target and calibrate the Hubble, and a few years after the telescope was launched, I was responsible for overseeing the peer review committees, which looked over proposals from researchers who wanted to use the telescope.

What was that experience like?
It was amazing to be able to see things coming in astronomy years before they were published. Reading hundreds of proposals and sitting in on deliberations about them was spectacular to watch.

Read the full interview. 

Image: Hubble scientists released this image of the star cluster Westerlund 2 to celebrate the telescope’s anniversary. ©NASA/ESA

In this April 25, 1990, photograph taken by the crew of the STS-31 space shuttle mission, the Hubble Space Telescope is suspended above shuttle Discovery’s cargo bay some 332 nautical miles above Earth. The Canadian-built Remote Manipulator System (RMS) arm, controlled from in-cabin by the astronaut crew members, held the huge telescope in this position during pre-deployment procedures, which included extension of solar array panels and antennae.

Cluster and Starforming Region Westerlund 2

Image Credit & Copyright: NASA, ESA, the Hubble Heritage Team
(STScI / AURA), A. Nota (ESA/STScI), and the Westerlund 2 Science Team

Explanation: Located 20,000 light-years away in the constellation Carina, the young cluster and starforming region Westerlund 2 fills this cosmic scene. Captured with Hubble’s cameras in near-infrared and visible light, the stunning image is a celebration of the 25th anniversary of the launch of the Hubble Space Telescope on April 24, 1990. The cluster’s dense concentration of luminous, massive stars is about 10 light-years across. Strong winds and radiation from those massive young stars have sculpted and shaped the region’s gas and dust, into starforming pillars that point back to the central cluster. Red dots surrounding the bright stars are the cluster’s faint newborn stars, still within their natal gas and dust cocoons. But brighter blue stars scattered around are likely not in the Westerlund 2 cluster and instead lie in the foreground of the Hubble anniversary field of view.

Does it still count as DIY if it was your idea, but someone else did the “doing”?! Either way, I’m still in love with my latest manicure by basecoat-topcoat​ (aka Kelly Ornstein, @basecoattopcoat on Twitter).

This design was in honor of the 25th anniversary of the Hubble Space Telescope. Kelly freehanded a mini-Hubble on my thumbnails so I could illustrate low Earth orbit with each hand.

Just my way of telling Hubble: I gotchu.

- Summer