2

Finally had time to finish this piece from forever ago. I’ve always loved Escher’s mind bending work and I’ve been really into drawing glass lately so it’s only natural to mix the two. I used a free sketchup model of Escher’s stairs as the base for this drawing. You can find tutorials of how I utilize 3D in my drawings on my YuumeiArt.com website. I forgot to record the drawing process for this one in particular, but the concept and process is all the same.

Now that I have bit more time after moving, expect lost more updates soon, and new comics are under way as well! :D

Five Times Astronaut Peggy Whitson Made History

On April 24, 2017, NASA Astronaut Peggy Whitson established the new record for the most time spent in space by an American astronaut. She’s spent more than 76 weeks of her life floating in microgravity!  It’s not the first time in her career at NASA that Whitson has established new milestones: here are just a few.

First NASA Science Officer

Peggy Whitson was the named the first NASA Science Officer aboard the space station in 2002. The position was created to work with the United States research community to understand and meet the requirements and objectives of each space station experiment.

First Female to Command the Space Station… Twice

Whitson became the first female to command the space station during Expedition 16 in 2008. Then Whitson became the first female to command the station twice during her current mission on April 9, 2017.

First Female Chief of the Astronaut Office

In 2009, Whitson became the first female and first non-pilot to achieve the most senior position for active astronauts, Chief of the Astronaut Office.

Most Spacewalks for a Female

On March 30, 2017, Peggy Whitson broke the record for most spacewalks and most time spent spacewalking for female astronauts. Suni Williams had previously held the record at 7 spacewalks.

Most Time In Space By A NASA Astronaut

At 1:27 a.m. ET on April 24, Peggy Whitson set the new record for cumulative time spent in space by an American astronaut. Jeff Williams previously set the record in 2016.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

The Start of Cassini’s Grand Finale

Cue drumroll…

For the first time ever, our Cassini spacecraft dove through the narrow gap between Saturn and its rings on April 26. At 5 a.m. EDT, Cassini crossed the ring plane with its science instruments turned on and collecting data. 

During this dive, the spacecraft was not in contact with Earth. The first opportunity to regain contact with the spacecraft is expected around 3 a.m. EDT on April 27.

This area between Saturn and its rings has never been explored by a spacecraft before. What we learn from these daring final orbits will further our understanding of how giant planets, and planetary systems everywhere, form and evolve.

So, you might be asking…how did this spacecraft maneuver its orbit between Saturn and its rings? Well…let us explain!

On April 22, Cassini made its 127th and final close approach to Saturn’s moon Titan. The flyby put the spacecraft on course for its dramatic last act, known as the Grand Finale. 

As the spacecraft passed over Titan, the moon’s gravity bent its path, reshaping the robotic probe’s orbit slightly so that instead of passing just outside Saturn’s main rings, Cassini would begin a series of 22 dives between the rings and the planet.

With this assist, Cassini received a large increase in velocity of approximately 1,925 mph with respect to Saturn.

This final chapter of exploration and discovery is in many ways like a brand-new mission. Twenty-two times, the Cassini spacecraft will dive through the unexplored space between Saturn and its rings. What we learn from these ultra-close passes over the planet could be some of the most exciting revelations ever returned by the long-lived spacecraft.

Throughout these daring maneuvers, updates will be posted on social media at:

@CassiniSaturn on Twitter
@NASAJPL on Twitter

Updates will also be available online at: https://saturn.jpl.nasa.gov/mission/grand-finale/milestones/ 

Follow along with us during this mission’s Grand Finale!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

There are more stars in the universe than grains of sand on the world’s beaches.
More stars in the universe than seconds of time that have passed since Earth formed.
More stars than words and sounds ever uttered by all humans who have ever lived.
Ocean Worlds Beyond Earth

We’re incredibly lucky to live on a planet drenched in water, nestled in a perfect distance from our sun and wrapped with magnetic fields keeping our atmosphere intact against harsh radiation and space weather.

We know from recent research that life can persist in the cruelest of environments here on Earth, which gives us hope to finding life thriving on other worlds. While we have yet to find life outside of Earth, we are optimistic about the possibilities, especially on other ocean worlds right here in our solar system.  

So…What’s the News?!

Two of our veteran missions are providing tantalizing new details about icy, ocean-bearing moons of Jupiter and Saturn, further enhancing the scientific interest of these and other “ocean worlds” in our solar system and beyond!

Cassini scientists announce that a form of energy for life appears to exist in Saturn’s moon Enceladus, and Hubble researchers report additional evidence of plumes erupting from Jupiter’s moon Europa.

The Two Missions: Cassini and Hubble

Cassini

Our Cassini spacecraft has found that hydrothermal vents in the ocean of Saturn’s icy moon Enceladus are producing hydrogen gas, which could potentially provide a chemical energy source for life.

Cassini discovered that this little moon of Saturn was active in 2005. The discovery that Enceladus has jets of gas and icy particles coming out of its south polar region surprised the world. Later we determined that plumes of material are coming from a global ocean under the icy crust, through large cracks known as “tiger stripes.” 

We have more evidence now – this time sampled straight from the plume itself – of hydrothermal activity, and we now know the water is chemically interacting with the rock beneath the ocean and producing the kind of chemistry that could be used by microbes IF they happened to be there.

This is the culmination of 12 years of investigations by Cassini and a capstone finding for the mission. We now know Enceladus has nearly all the ingredients needed for life as we know it.

The Cassini spacecraft made its deepest dive through the plume on Oct. 28, 2015. From previous flybys, Cassini determined that nearly 98% of the gas in the plume is water and the rest is a mixture of other molecules, including carbon dioxide, methane and ammonia. 

Cassini’s other instruments provided evidence of hydrothermal activity in the ocean. What we really wanted to know was…Is there hydrogen being produced that microbes could use to make energy? And that’s exactly what we found!

To be clear…we haven’t discovered microbes at Enceladus, but vents of this type at Earth host these kinds of life. We’re cautiously excited at the prospect that there might be something like this at Enceladus too!

Hubble

The Hubble Space Telescope has also been studying another ocean world in our solar system: Europa!

Europa is one of the four major moons of Jupiter, about the size of our own moon but very different in appearance. It’s a cold, icy world with a relatively smooth, bright surface crisscrossed with dark cracks and patches of reddish material.

What makes Europa interesting is that it’s believed to have a global ocean, underneath a thick crust of ice. In fact, it’s got about twice as much ocean as planet Earth!

In 2014, we detected evidence of intermittent water plumes on the surface of Europa, which is interesting because they may provide us with easier access to subsurface liquid water without having to drill through miles of ice.

And now, in 2016, we’ve found one particular plume candidate that appears to be at the same location that it was seen in 2014. 

This is exciting because if we can establish that a particular feature does repeat, then it is much more likely to be real and we can attempt to study and understand the processes that cause it to turn on or off. 

This plume also happens to coincide with an area where Europa is unusually warm as compared to the surrounding terrain. The plume candidates are about 30 to 60 miles (50 to 100 kilometers) in height and are well-positioned for observation, being in a relatively equatorial and well-determined location.

What Does All This Mean and What’s Next?

Hubble and Cassini are inherently different missions, but their complementary scientific discoveries, along with the synergy between our current and planned missions, will help us in finding out whether we are alone in the universe. 

Hubble will continue to observe Europa. If you’re wondering how we might be able to get more information on the Europa plume, the upcoming Europa Clipper mission will be carrying a suite of 9 instruments to investigate whether the mysterious icy moon could harbor conditions favorable for life. Europa Clipper is slated to launch in the 2020s.

This future mission will be able to study the surface of Europa in great detail and assess the habitability of this moon. Whether there’s life there or not is a question for this future mission to discover!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com