Rett-Syndrome

Ed’s visit with sweet Melody today has special meaning to me, more than anyone might realize. My beautiful, sweet, almost 3 year old niece Emily, was diagnosed with Rett Syndrome this year, the same thing this precious girl has. Rett Syndrome is terrifying, it has robbed my Emily-girl of her speech, the use of her hands, the ability to eat and digest properly, and at some point it will likely confine to her to a wheelchair. It also eventually will likely cut her life short. 😢💔
Many skills and abilities she once had, she’s lost because of Rett. She’s smart as hell, feisty as the day is long, and is learning to use Eye Gaze technology to communicate, since she’s unable to use her voice, and nobody has a brighter smile and a more beautiful laugh than my niecey.

Seeing our Teddy so lovingly give his time and energy, and his HEART, to this beautiful, special little girl… It just overwhelms me and makes me love him that much more. I shed some serious tears today watching him love on another little Rett Warrior. 💜💜💜💜💜💜 I love his heart so hard it hurts.

So to Ed, and to Stu, bless you for taking the time to make this happen, for making her dream come true, and for shining your love and light on a day that we all needed it so badly. It means more to me than you’ll ever, ever know. 💕

L-💚

Oh my goodness…. You guys remember sweet Melody, the little princess with Rett Syndrome Ed visited last month? Her sweet mum started a fundraising campaign for a new iPad for Melody because her old one was dying, and she loves and depends on his music and videos so much. Guess who went out and bought her a brand new one.
He just owns my heart that Boy 💚💚💚💚💚

{Credit to Melody’s mum on Twitter}
Watch on mynotes4usmle.tumblr.com

Step 1 USMLE Tutorial - Rett Syndrome (by USMLESuccessAcademy)

An X-linked Autism Spectrum Disorder

Rett syndrome is a postnatal neurodevelopmental disorder defined as an X-linked autism spectrum disorder. Put simply, it affects the development of the nervous system after birth. The underlying genetic defects have been associated with the X-chromosome, and it is a disorder which comes under the Autism Spectrum of disorders.

Rett syndrome principally affects women. Approximately 1 in 10,000 women are affected by this disorder. Despite being a genetic, developmental disorder, the symptoms for Rett Syndrome do not usually present until about 6 months following birth. What seems to be occurring is that impairment in the development of the nervous system is having a deleterious effect on learning. The symptoms are characterised by:

  • Normal development during gestation and for the first few months following birth, followed by a phase of developmental regression
  • Deceleration of head growth
  • Breathing disturbances during (but not limited to) waking
  • Loss of acquired skills in manual dexterity and hand movements resulting in repeated hand movements such as clapping, hand squeezing, wringing, and rubbing
  • Evidence of social withdrawal
  • Loss of learned vocabulary

Classical Rett syndrome exhibits most of the aforementioned symptoms and is usually the severe form. Variant Rett syndrome exhibits fewer of the described symptoms, so may appear to be more ‘mild’. In Variant Rett syndrome, there is improvement in the social withdrawal and communication symptoms into the mid to late teens. Disturbances in movement persist, however. There is also the risk of Rett syndrome patients undergoing scoliosis. Scoliosis is extreme curvature and twisting in the structure of the spine, showing some impairment in skeletal development also.

X-ray of scoliosis in a teenager, picture from The Lancet p.1533 vol.317 (2008)

Rett syndrome has been linked to a mutation in the X chromosome. In particular, this mutation occurs within the MECP2 gene. This gene codes for a protein involved in regulating the activity of some other genes by switching off their function. The mutations responsible for Rett Syndrome appear to inactivate the MECP2 gene, thus impairing gene silencing. Ordinarily, different genes are expressed during different stages of development. In Rett syndrome, genes from an earlier developmental stage which should be turned off to allow for a shift in genetic profile, remain switched on thus confusing the developmental progress. This disrupts the pattern of genetic expression, and has knock on effects on later development.

Rett Syndrome is part of the Autism spectrum disorders due to the social withdrawal which makes up part of the syndrome. Social skills rely on aspects of learning, and learning appears to be affected in Rett syndrome, as is evident from the loss of learned (acquired) skills. Learning is a process which involves modifications of the existing wiring of the brain, as well as forming new connections between neurons. This can be seen as a developmental process as neurons must produce new proteins and modify their structure and function. The impairments to cognitive and social function which occurs due to Rett Syndrome may be attributed to the effects of the mutations on learning and general development.

In studies comparing the size and weight of brains from average girls with those of Rett Syndrome sufferers, scientists found a reduction in weight of the brain of between 14-34% demonstrating a deficit in brain development. Regions which were affected the greatest were the cerebral cortex, midbrain and basal ganglia. Consistent with the symptoms, the cerebral cortex is principally associated with higher cognitive function and learning. The midbrain is part of the brain stem, and is involved in regulating basic processes such as respiratory rhythm and heart rate. The basal ganglia have some involvement in learning, as well as being the coordinators of limb movement.

A simple diagram of brain anatomy. I put this here because it shows the locations of the brainstem, cortex and the basal ganglia. The basal ganglia are a set of structures which include the structure highlighted in the diagram (which is the thalamus) are actually difficult to show a diagram of the brain such as this, as they’re actually buried within each hemisphere, and this picture only shows a section down the centre of the brain ( a sagittal section).

There are neuronal circuits in the brain stem which regulate breathing, outside of conscious influence. Impairment in the development of these circuits disrupts the function they’re supposed to carry out and this can have a knock on effect on how the brain coordinates breathing. The breathing difficulties appear to be most pronounced during waking hours, but do occur at night - albeit to a lesser extent. This has been attributed to the different neurochemical states the brain occupies during sleeping and waking. What this means is that some populations of neurons which use different neurotransmitters as their means of communication with each other, are implemented during sleep.  Activating a different system of neurons which is less affected by the underlying pathology of Rett syndrome may produce less negative effects on breathing. There may be impairment in the connections from arousal centres which feed into the breathing circuits to match their function with the organisms current state of arousal (sleep/wakefulness).

Rett syndrome is still a poorly understood disorder, and the science behind how it affects breathing still has some way to go. So far, our understanding tells us this much, but this complex disorder demonstrates the complex array of functions genes carry out, and how a large part of our seemingly fluid mind is at the mercy of basic genetics.

mirror.co.uk
Simon Cowell and Louis Tomlinson pay £15k for paintings from artist, 11
Stars splashed out on Rhea Kara's artworks - with proceeds going towards vital research into Rett Syndrome which she has vowed to find a cure for
By Rachel Bishop

22:39, 31 OCT 2016  UPDATED 23:50, 31 OCT 2016  BY RACHEL BISHOP

Stars splashed out on Rhea Kara’s artworks  - with proceeds going towards vital research into Rett Syndrome which she has vowed to find a cure for.

Good Morning Britain Fundraiser of the year Rhea Kara joined a host of winners at the Pride of Britain Awards tonight - and she got the seal of approval from Simon Cowell and Louis Tomlinson.

The 11-year-old artist’s incredible fundraising efforts for Rett Syndrome were recognised tonight as comedy duo Ant and Dec handed her the Young Fundraisers Award.

Rhea was so moved by the plight of children with the incurable condition that she painted a picture each day for 100 days and sold them, raising thousands for research .

Spice Girls Geri Horner and Emma Bunton brought on two of her paintings and the Geordie boys then auctioned it off.

Louis Tomlinson and Simon Cowell paid £15,000 each for the artworks.

On stage, Susanna said: “You have such an exceptional talent as an artist. You are fantastic and have done so much for the cause.”

Dec said: “You have used your talent selflessly and you really deserve that award. Well done.”

Speaking afterwards Susanna told the Mirror: “When we were judging his award, what stood out about Rhea was her selflessness.

"She feels the disease and the pain even though she is not directly affected.”

Ben added: “She has an incredible passion for art, that has manifested itself in a brilliant way to raise money.

Rhea was handed her award - introduced by Susanna Reid and Ben Shephard - at the awards hosted at the Grosvenor Hotel.

Speaking afterwards, Rhea said: "Having Simon Cowell bidding on one of my paintings was so exciting. I was a bit nervous before but I am just so excited to be here."I loved being on stage with Ant and Dec.

“No matter what it takes I’ll keep going.

"My friend Hannah didn’t do anything to deserve her situation, I’m going to keep fundraising until I find a cure for her.”

Our winners include children facing daunting adversity, inspirational campaigners, members of the emergency services who went beyond the call of duty, and people who displayed awe-inspiring courage to save others.

Good Morning Britain Young Fundraiser of the Year Rhea Kara with Geri Horner, Emma Bunton and Ben Shephard

First Pre-Clinical Gene Therapy Study to Reverse Rett Symptoms

The concept behind gene therapy is simple: deliver a healthy gene to compensate for one that is mutated. New research published today in the Journal of Neuroscience suggests this approach may eventually be a feasible option to treat Rett Syndrome, the most disabling of the autism spectrum disorders. Gail Mandel, Ph.D., a Howard Hughes Investigator at Oregon Health and Sciences University, led the study. The Rett Syndrome Research Trust, with generous support from the Rett Syndrome Research Trust UK and Rett Syndrome Research & Treatment Foundation, funded this work through the MECP2 Consortium.

In 2007, co-author Adrian Bird, Ph.D., at the University of Edinburgh astonished the scientific community with proof-of-concept that Rett is curable, by reversing symptoms in adult mice. His unexpected results catalyzed labs around the world to pursue a multitude of strategies to extend the pre-clinical findings to people.

Today’s study is the first to show reversal of symptoms in fully symptomatic mice using techniques of gene therapy that have potential for clinical application.

Rett Syndrome is an X-linked neurological disorder primarily affecting girls; in the US, about 1 in 10,000 children a year are born with Rett.  In most cases symptoms begin to manifest between 6 and 18 months of age, as developmental milestones are missed or lost. The regression that follows is characterized by loss of speech, mobility, and functional hand use, which is often replaced by Rett’s signature gesture: hand-wringing, sometimes so intense that it is a constant during every waking hour. Other symptoms include seizures, tremors, orthopedic and digestive problems, disordered breathing and other autonomic impairments, sensory issues and anxiety. Most children live into adulthood and require round-the-clock care.

The cause of Rett Syndrome’s terrible constellation of symptoms lies in mutations of an X-linked gene called MECP2 (methyl CpG-binding protein). MECP2 is a master gene that regulates the activity of many other genes, switching them on or off.

“Gene therapy is well suited for this disorder,” Dr. Mandel explains. “Because MECP2 binds to DNA throughout the genome, there is no single gene currently that we can point to and target with a drug. Therefore the best chance of having a major impact on the disorder is to correct the underlying defect in as many cells throughout the body as possible. Gene therapy allows us to do that.”

Healthy genes can be delivered into cells aboard a virus, which acts as a Trojan horse. Many different types of these Trojan horses exist. Dr. Mandel used adeno-associated virus serotype 9 (AAV9), which has the unusual and attractive ability to cross the blood-brain barrier. This allows the virus and its cargo to be administered intravenously, instead of employing more invasive direct brain delivery systems that require drilling burr holes into the skull.

Because the virus has limited cargo space, it cannot carry the entire MECP2 gene. Co-author Brian Kaspar of Nationwide Children’s Hospital collaborated with the Mandel lab to package only the gene’s most critical segments. After being injected into the Rett mice, the virus made its way to cells throughout the body and brain, distributing the modified gene, which then started to produce the MeCP2 protein.

As in human females with Rett Syndrome, only approximately 50% of the mouse cells have a healthy copy of MECP2. After the gene therapy treatment 65% of cells now had a functioning MECP2 gene.

The treated mice showed profound improvements in motor function, tremors, seizures and hind limb clasping. At the cellular level the smaller body size of neurons seen in mutant cells was restored to normal. Biochemical experiments proved that the gene had found its way into the nuclei of cells and was functioning as expected, binding to DNA.

One Rett symptom that was not ameliorated was abnormal respiration. Researchers hypothesize that correcting this may require targeting a greater number of cells than the 15% that had been achieved in the brainstem.

“We learned a critical and encouraging point with these experiments – that we don’t have to correct every cell in order to reverse symptoms. Going from 50% to 65% of the cells having a functioning gene resulted in significant improvements,” said co-author Saurabh Garg.

One of the potential challenges of gene therapy in Rett is the possibility of delivering multiple copies of the gene to a cell. We know from the MECP2 Duplication Syndrome that too much of this protein is detrimental. “Our results show that after gene therapy treatment the correct amount of MeCP2 protein was being expressed. At least in our hands, with these methods, overexpression of MeCP2 was not an issue,” said co-author Daniel Lioy.

Dr. Mandel cautioned that key steps remain before clinical trials can begin. “Our study is an important first step in highlighting the potential for AAV9 to treating the neurological symptoms in Rett. We are now working on improving the packaging of MeCP2 in the virus to see if we can target a larger percentage of cells and therefore improve symptoms even further,” said Mandel. Collaborators Hélène Cheval and Adrian Bird see this as a promising follow up to the 2007 work showing symptom reversal in Rett mice. “That study used genetic tricks that could not be directly applicable to humans, but the AAV9 vector used here could in principle deliver a gene therapeutically. This is an important step forward, but there is a way to go yet.”

“Gene therapy has had a tumultuous road in the past few decades but is undergoing a renaissance due to recent technological advances. Europe and Asia have gene therapy treatments already in the clinic and it’s likely that the US will follow suit. Our goal now is to prioritize the next key experiments and facilitate their execution as quickly as possible. Gene therapy, especially to the brain, is a tricky undertaking but I’m cautiously optimistic that with the right team we can lay out a plan for clinical development. I congratulate the Mandel and Bird labs on today’s publication, which is the third to be generated from the MECP2 Consortium in a short period of time,” said Monica Coenraads, Executive Director of the Rett Syndrome Research Trust and mother of a teenaged daughter with the disorder.

Another FC story: a truly blind facilitator

This one from a mother and daughter I know. They both have Rett syndrome, the mother mild and the daughter severe. The mother was just diagnosed as having autism and a severe intellectual disability growing up, until she learned to write, and later speak. Her daughter will probably never speak but does type using FC.

They have used a lot of ingenious ways of proving that her daughter is really the one doing the typing. But one of them involved having a blind facilitator. As in, the facilitator himself was literally blind and could not see the letter board. They set everything up like usual, to show to a skeptical teacher. Then without telling the facilitator, they flipped the letter board upside down.

The daughter of course continued to type perfectly accurate responses. The facilitator was very confused and somewhat agitated about the whole thing, and kept asking “are you sure you meant to hit that letter?” But she firmly continued to type on her upside down letter board, and the facilitator clearly had no idea she was typing anything other than gibberish. He was able to give her hand the support it needed to type without having to see the letters, because it was her hand he was focused on.

After that incident, the teacher no longer doubted that the daughter was doing her own work. I’ve never doubted it either. Her daughter is highly sensing and has an entire way of communicating that doesn’t involve speech or typing at all. The content of her typing matches the person she comes across as on a sensing level. Hard to explain.

I wish she and her mother would write a book together because they have both done so many interesting things. But too much of their time is taken up by survival. The daughter has severe health issues and many times has had a projected lifespan of months. So working on a book would not be her priority. But I wanted to add this to my #fc tag for those interested in stories about FC, both done right and done horribly wrong, and my thoughts on the matter. I can’t consolidate all those ideas into one post so I keep them all in one tag for those who have expressed an interest in my experiences and opinions.

I’m gonna be honest people, communicating with a person who’s only “voice” is an eyebrow raise meaning “yes,” is incredibly frustrating

it can also bring some of the most fun, hilarious, exhilarating conversations you will ever have

because when you finally arrive at that thought they wanted to share, that hidden “yes” that holds so much relief for the nonverbal person, it may as well be “YES, THANK GOD, FINALLY,” you realize that while most conversations are free, some are hard-won, which, no matter what the topic, makes them unbelievably precious

Decoding Rett syndrome: New pieces to the puzzle

Rett Syndrome is a neurological disorder that affects about 1 in 10,000 girls. Back in 1992, University of Edinburgh researcher Adrian Bird discovered that the protein, MeCP2, plays a major role in the disease. The story of MeCP2 is in many ways a microcosm of human genetics. It has become the showcase gene for many complex epi-genetic phenomena including X-linked inactivation, DNA methylation, and genomic imprinting. These gender-specific bargaining chips provide compatibility in an evolutionary system where sex-chromosome provisioning is inherently assymetric. In two new papers, one in Nature and the the other in Nature Neuroscience, Bird and collaborator Michael Greenberg, show how mutations found in Rett Syndrome affect the interaction of MeCP2 with a key regulatory protein known as NCoR.

Nearly all cases of Rett Syndrome are caused by mutations at various postions in the MeCP2 gene. Bird and Greenberg analyzed the locations of these mutations using the RettBase MeCp2 database, and found they cluster to two primary locations—the well-known methyl-CpG binding domain, and a new hotspot within a transcriptional repressor domain (TRD). When they compared these locations with mutations found in the general population by using the Exome Variant Server, they found no overlap. This suggests the that the MeCP2 and TRD regions are the primary regions involved in Rett’s.

The researchers hypothesized that the newly found TRD region must act through a unknown regulator of MeCP2 function. Using mass spectrometry, they were able to identify several factors which they had purified from Mecp2-EGFP “knock-in” mice. Most of these factors turned out to be subunits of the co-repressor, NCoR, which was previously known to interact with MeCP2. This is the first identified example of a protein-protein interaction known to be disrupted in Rett’s.

In the Nature paper, the researchers further report that activity-dependent phosphorylation of MeCP2 mediates its interaction with NCoR. They used a technique known as phosphotryptic mapping to identify three sites that are directly phosphorylated in MeCP2 as a result of elevation in cAMP or BDNF. More generally, they showed that membrane depolarization, and therefore activity, results in the phosporylation.

One confounding factor in trying to pinpoint the mechanisms underlying Rett Syndrome is that both loss of MeCP2, and overexpression of MeCP2, can lead to the disease. In mouse models of the disease, this could be accounted for by the observation that both loss of NCoR binding, and constitutive binding of NCoR can lead to disease symptoms. While not a complete explanation of the role of MeCP2 in the disease, it provides some clues to help dissect the involvement of the many different kinds of mutations involved.

Despite the rarity of Rett’s syndrome, its impact on our understanding of human genetics and neural development should not be underestimated. As one of the autistic spectrum disorders, research on Rett’s helps connect molecular mechanics to behavior. For example, when MeCP2 is bound to DNA it can cause condensation of the chromatin structure, and also form complexes with histone deacetylaces. In demostrating that neural activity, and subsequent signal tranduction pathways, lead to modifications of MeCP2, the researchers have revealed a path from the environment directly to the genes.

The X-linked inactivation of one copy of the MeCP2 gene in females adds another layer of complexity to the disease. The celluar mosiac formed by the pattern of inactivation, particularly in the brain, needs more study to be undersatood. The fact that Rett’s symptoms can be “rescued” in mice by the expression of MeCP2 in postmitotic neurons is encouraging. In humans, Rett’s is frequently not observed untill the first or second year of life. As MeCP2 activation correlates with this period of rapid neural maturation, Rett’s is generally considered to be neurodevelopmental disease, as opposed to a neurodegenerative disease.

Rett’s is hardly ever observed in males for the simple reason that they fail to thrive long before birth. In those rare cases that a presumably XXY male child is rescued by the additional X chromsome, as in Klinefelder’s disease, rare opportunity to study the disease etiology is afforded. The efforts of these researchers, and the larger Rett’s community, together with the insights afforded by massive data collation have turned a rare disease into a primary source of knowledge about how evolution proceeds through the interplay of the sexes at the genetic and epigenetic levels.

Statins Suppress Rett Syndrome Symptoms in Mice

Statins, a class of cholesterol-lowering drugs found in millions of medicine cabinets, may help treat Rett Syndrome, according to a study published today in Nature Genetics. The Rett Syndrome Research Trust (RSRT) funded this work with generous support from the Rett Syndrome Research Trust UK and Rett Syndrome Research & Treatment Foundation.

Rett Syndrome is a neurological disorder that affects girls. A seemingly typical toddler begins to miss developmental milestones. A regression follows as young girls lose speech, mobility, and hand use. Many girls have seizures, orthopedic and severe digestive problems, as well as breathing and other autonomic impairments. Most live into adulthood and require total, round-the-clock care. Rett Syndrome affects about 1 in 10,000 girls born in the U.S. each year.

The new study screened for randomly induced mutations in genes that modify the effect of the Rett gene, MECP2 (methyl-CpG-binding protein 2), in a mouse model. MECP2 turns other genes on or off by disrupting chromatin, the DNA-protein mix that makes up chromosomes.

The challenge of treating Rett Syndrome is what drove senior author Monica Justice, Ph.D., Professor in the Departments of Molecular and Human Genetics and Molecular Physiology and Biophysics at the Baylor College of Medicine, to look beyond MECP2, hoping to find new drug targets that might improve symptoms or even reverse the course of the disease. In 2007, Adrian Bird, Ph.D., Buchanan Professor of Genetics at the Wellcome Trust Centre for Cell Biology at the University of Edinburgh, showed that symptoms in mice are reversible regardless of the age of the animal.

Exploring cholesterol metabolism in neurological diseases is an emerging area, with statin drugs being tested in fragile X syndrome, neurofibromatosis, amyotrophic lateral sclerosis, and other conditions. But it hadn’t been on the radar for Rett Syndrome. “Our screen was to see if we could suppress the symptoms to reveal alternative pathways to treatment. The cholesterol hit was a big one,” Dr. Justice said. The screen was unbiased – the researchers were looking for any gene that would interact with MECP2 in a useful way, rather than employing a candidate gene approach based on hypotheses.

Dr. Justice and her team injected healthy male mice with a chemical called ENU (a form of nitrosourea) that mutates sperm stem cells randomly, then mated the males to Rett females. The researchers then looked for offspring that should have developed the syndrome (according to their genes), but didn’t (according to their good health).

Key to the investigation was being able to tell sick mice from healthy ones. Fortunately this turned out to be easy. The rescued mice didn’t develop the characteristic tremor, trouble breathing, poor limb-clasping, and general scruffiness of their affected cage-mates. They moved around more, performed better on mobility tests and lived longer.

Once the rescued mice had been identified the random gene mutations from the 24,000 genes that make up the mouse genome had to be pinpointed. “With next generation DNA sequencing, we are finding mutations so easily and quickly. It’s amazing,” said Dr. Justice, compared to the old days of setting up many more generations of crosses to narrow down a part of the genome harboring a gene of interest.

“We are only15% of the way through the screen, and so far we have identified 5 modifiers. The most drug-targetable is a gene called squalene epoxidase (Sqle), which encodes a rate-limiting enzyme in the cholesterol biosynthetic pathway. Frankly, this discovery was a surprise,” Dr. Justice said.  It’s important to note that this enzyme is different from the rate-limiting enzyme (HMG CoA reductase) influenced by statin drugs.

Cholesterol is of course best known for its negative effects on the cardiovascular system, but the lipid has multiple roles in the brain: it helps to form the myelin insulation on neurons and takes part in membrane trafficking, dendrite remodeling, synapse formation, signal transduction, and neuropeptide synthesis.

The next step was to test several statins (fluvastatin and lovastatin) on Rett mice. Like the Sqle mutation, the drugs improved symptoms. Treated mice performed well on mobility and gross motor tests, had better overall health scores and lived longer. The drugs didn’t, however, improve breathing.

“When we saw the mutation in a cholesterol pathway enzyme, we immediately thought of statin drugs. Now that our eyes have opened to what is going on, we have a multitude of drugs that modulate lipid metabolism that we can try in addition to statins,” said first author Christie Buchovecky, graduate student in the Justice lab.

With additional RSRT funding, pediatric neurologist and Director of the Tri-State Rett Syndrome Center in the Bronx Dr. Sasha Djukic undertook a detailed review of lipid data in girls with Rett Syndrome. She found that a subset have elevated cholesterol levels which normalize as they age. These data are not included in the Nature Genetics publication but will be part of a subsequent paper. Dr. Djukic is now planning a clinical trial.

Drs. Justice and Djukic caution that carefully designed and rigorously executed clinical trials are essential to test whether what works in mice will also work in girls with Rett Syndrome. Clinical trials should also determine the most effective timeframe for treatment, ways to identify which girls are most likely to respond, (for example, will statins help girls with Rett who do not have elevated cholesterol?), which drugs to trial and what dosages are effective but not toxic.

“Although statins are blockbuster drugs taken by a large percentage of the population they are not without risks and side-effects, and data on statins in the general pediatric population are quite limited. One of the key objectives of the clinical trial will be to determine correct dosages for Rett symptoms. It’s important to note that the mice in Dr. Justice’s study received very low doses of statins. I urge parents to resist any temptation to medicate their children with off-label statins,” cautions Dr Djukic. “The only way to know if this class of drugs will be efficacious in Rett is through controlled trials. Working with Dr. Justice and RSRT we will be bringing families additional information as soon as possible.”

“The biggest finding is the discovery that this pathway is so important to the pathology of the disorder; it suggests new directions for trying to learn more about Rett Syndrome,” Dr. Justice explains. “Emerging evidence from both mice and humans suggest that Rett Syndrome may have a component of disease that is metabolic. Certainly, this study will further clarify our data, and may suggest avenues for treatment that were previously unexplored.”

I had never heard of Rett Syndrome before my daughter was diagnosed in 2011. I didn’t even really give much thought to what life with a severe disability was like. Now I’m battling stereotypes and trying not to let my family be defined something I had never known existed.

Here’s the three things I ask:

1. Don’t make assumptions based on what you see. There’s a whole lot more to people than their disabilities.

2. Don’t show pity. My daughter is perfectly happy. Don’t assume that her disability makes her miserable.

3. Be kind. Smile. If you’re brave enough, say hello. My daughter loves to make new friends.

vimeo

Always an honor to work with Ogilvy and Mather.  This time we filmed Mr. Duncan Keith of the Blackhawks as part of the #OneGoal campaign.  He fulfilled the goal of Cammy, a young lady with Rett’s Syndrome.  Her goal was to make a goal.

We had a great team for this one!  Thank you Fred Miller, Johnny McGuire, Jason Schettler, Gabe Coyle, & Spencer Smith.

So last week I gave my presentation on Rett Syndrome for my Science Baccalaureatte to my biology class. I didn’t really have to do it, but I actually really wanted to (which surprised me!!). It was like 25 mins long and the class seemed really interested and asked loads of questions. Afterwards people were really lovely and said I was good at presenting and that the topic was interesting and they learned from it. I’m pleased to have been able to do my little bit to raise awareness of the syndrome. It felt good to be able to stand and talk about something I’m interested in and the areas of science I love and I got to get across the message that non-verbal people are not non-thinking people. I actually really really enjoyed it and I’m pleased with myself for doing it.

2

Jackie Corrado Babiarz & team “Cammy Can” ran the Chicago marathon to raise funds & awareness for the International Rett Syndrome Foundation, whose mission is to cure the debilitating disorder. In a symbolic and inspiring moment, Jackie and husband Bill carry their daughter Cameron, who cannot walk, speak or use her hands due to Rett Syndrome, across the finish line.

Jackie said:

I was pretty much hyperventilating at this point. In the photo [where] I was holding Cammy, I was saying over and over again “we did it. we did it. we did it.” It was the proudest moment of my life. I cannot explain the range of emotions I went through along that course. My knee was throbbing and locked up for miles as I walked more of the second half. At mile 23, I had an emotional breakdown bawling my eyes out saying “I just want this to be over (and I wasn’t talking just about the marathon. I want Rett to be over), then after that, I just started running again and couldn’t feel my knee as Molly [fellow Cammy Can team member] kept counting down the blocks "Cammy is in 10 more blocks. Cammy is in 9 more blocks….” My body was completely shot at this point and i could barely carry her. This emotional outpouring in this photo was seriously what they mean when they say “give it all you got” because I had nothing left and ironically, that little girl actually carried me across the finish line.

2

I shit you not when I say that today was one for the records for me in terms of self-loathing, self-doubt, and general hopelessness.

but in the infinite wisdom of Wreck-It Ralph, “if that little kid likes me, how bad can I be?”

I will live another day. fuck it, I will live a hundred years in the hopes that someday I’ll get to hear my little angel speak. (and I don’t care if it’s via aug comm or her vocal chords; I just want to know if she really likes “Call Me Maybe” or if she’s been humoring me all this time!)

I’m not even exaggerating when I say that this child is not even 5 years old yet and she’s already saved my life more times than I can count.

This is my little niece, her name is Aleisha.

a few months ago she was diagnosed with Rett syndrome.

she developed normally until she was about 2, she said small words like ‘mum’ or 'more’ or 'num’ for food.
 she was crawling around, dancing when a song she liked came on.

she is 5 now, she cant say any words, but it doesnt mean she cant express her emotions.

she cant walk, unless we guide her.

she laughs and yells and cries.

she is human like all of us.

but how miraculous it would be for my family, especially my sister, if they find a cure for rett girls.

my precious little niece might one day be able to walk, or sing (very badly, like her auntie ceri)

she is the most special inspiring person in my life, and im so proud to call this giggling wonder my niece.