Piston

New type of cell movement discovered

In a new study from the University of Pennsylvania and National Institute of Dental and Craniofacial Research, scientists used an innovative technique to study how cells move in a three-dimensional matrix, similar to the structure of certain tissues, such as the skin. They discovered an entirely new type of cell movement whereby the nucleus helps propel cells through the matrix like a piston in an engine, generating pressure that thrusts the cell’s plasma membrane forward.

“Our work elucidated a highly intriguing question: how cells move when they are in the complex and physiologically relevant environment of a 3-D extracellular matrix,” said Hyun (Michel) Koo, a professor in the Department of Orthodontics at Penn’s School of Dental Medicine. “We discovered that the nucleus can act as a piston that physically compartmentalizes the cell cytoplasm and increases the hydrostatic pressure driving the cell motility within a 3-D matrix.”

R. J. Petrie, H. Koo, K. M. Yamada. Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix. Science, 2014; 345 (6200): 1062 DOI: 10.1126/science.1256965

Penn and NIH researchers measured the internal pressure of individual fibroblast cells (in orange) moving through a three-dimensional matrix (in blue). They found that, in this environment, the cells’ nuclei operate like an engine’s piston to push the cell forward.  Credit: University of Pennsylvania/NIDCR