ExoMars first colour image of Phobos

Colour composite of Phobos taken with the ExoMars orbiter’s Colour and Stereo Surface Imaging System (CaSSIS) on 26 November 2016. The observation was made at a distance of 7700 km and yields a resolution of 87 m/pixel.

To create the final colour image, two images were taken through each of the four colour filters of the camera – panchromatic, blue–green, red and infrared – and then stitched together and combined to produce the high-resolution composite.

Two of the colour filters used by CaSSIS lie outside the wavelength response of the human eye, so this is not a ‘true’ colour image. However, showing the data as a colour representation can reveal details of the surface mineralogy. Different colours are clearly seen, with the bluest part in the direction of the large crater Stickney, which is out of view over the limb to the left. Although the exact composition of the material is unknown, the colour differences are thought to be caused by compositional variations on scales of hundreds of metres to several kilometres.

Credit: ESA/Roscosmos/CaSSIS

Computer glitch triggers guidance error as likely cause of Schiparelli crash.

Its computers being fed false data, Europe’s Schiaparelli lander plummeted more than 3.7 kilometers to its crash landing on Mars, recent analysis by the European Space Agency has announced. During the lander’s Entry, Descent and Landing phase – where onboard computers autonomously control the flight – the inertial measurement unit believed that Schiaparelli had an altitude below the Martian surface, even though it was still in the atmosphere. 

Although this error only lasted a second, the onboard computer released its backshell and parachute and briefly fired its landing thrusters – all many minutes prematurely.

Scientists analyzing the data are still unsure where the error originated from, but are confident this was the cause of the lander’s ultimately unsuccessful landing. However, Schiaparelli successfully transmitted all data it was supposed to up until the moment of impact, technically achieving its primary goal of collecting and recording test data for Martian landing technologies.

The image above shows the spacecraft’s impact crater, including metallic fragments and surface charring. The entry module’s parachute and backshell can be seen in lower left, while the main, front heat shield is seen on lower right. 

Schiaparelli launched in March, 2016 along with the Trace Gas Orbiter; both spacecraft were part of the first half of the ExoMars program, a joint ESA-Russia mission to Mars.

Member states of the European Space Agency will decide in early December whether or not to commit a five-year spending package on the second half of the ExoMars program, which will see another orbiter and Russian-built rover arrive and explore the Red Planet.

Before and after imagery of the Schiaparelli crash site taken by MRO.

Desert trial for ESA Mars rover

Next week will see ESA’s most ambitious planetary rover test yet. Robotic exploration of a Mars-like desert in South America will be overseen from the UK, providing experience for future missions to the Red Planet.

The rover faces the desolate Atacama Desert in northern Chile, one of the closest terrestrial matches for Mars. Among the driest places on Earth, it lacks any vegetation and its red–brown soil and rocks make it look even more like Mars.

The aim is to build up experience in operating rovers on a planet, which requires a very different way of working from a satellite mission.

For added pressure on the rover’s remote overseers – based at the Satellite Applications Catapult facility in Harwell, UK, next to ESA’s European Centre for Space Applications and Telecommunications – each day of the five-day  test will be treated as equivalent to two Mars days, or ‘sols’.

For each sol they will first downlink data then prepare a set of commands for the next sol that the rover will then carry out on its own.

The trial is intended to develop technologies and expertise for future Mars missions in general, but for added realism it is using ESA’s 2018 ExoMars rover as its ‘reference mission’.

An early prototype of the six-wheeled ExoMars rover will be put through its paces, fitted with prototypes of three of its scientific instruments: a panoramic camera for stereo 3D imaging, a ground-penetrating radar to probe subsurface geology, and a close-up imager for studying subsurface samples to a resolution of a thousandth of a millimetre.

These three instruments will work together to select a sample site with outcrops of bedrock beside looser material. A human-operated hand drill will gather underground samples for the rover to examine – although this human intervention will remain invisible to the remote operators.

“This field trial is about optimising the use of typical instruments and equipment aboard a Mars rover and generating a set of commands for the rover to execute the following day,” explains Michel van Winnendael, overseeing the Sample Acquisition Field Experiment with a Rover, or SAFER, project for ESA.

Image credit: ESA-Michel van Winnendael

Mars methane mission lifts off
Europe and Russia launch a joint mission to the Red Planet to investigate whether methane in the Mars atmosphere comes from microbial life.

Europe and Russia have launched a joint mission to the Red Planet.

The satellite, called the ExoMars Trace Gas Orbiter (TGO), lifted off from Baikonur in Kazakhstan at 09:31 GMT.

The probe will investigate whether the methane in the world’s atmosphere is coming from a geological source or is being produced by microbes.

If all goes well, the two space powers expect to follow up this venture with a rover, to be assembled in the UK, which will drill into the surface.

That could launch in 2018, or, as seems increasingly likely, in 2020.

Continue Reading.

Phase one of the ExoMars mission launches to find life on the Red Planet

The ExoMars program consists of two launches to the Red Planet: today’s and one in 2018. Today’s rocket launch carries the Trace Gas Orbiter and the Schiaparelli EDM Lander into space, which will both arrive at Mars in October of this year, according to the ESA. Once there, the Trace Gas Orbiter will put itself into orbit around the planet and measure the types of gases in the atmosphere. Specifically, the orbiter is looking for traces of methane — a potential indicator of biological life on the planetary surface below.

The ExoMars Trace Gas Orbiter module consisting of the spacecraft structure, thermal control and propulsion systems was handed over by OHB System to Thales Alenia Space France at a ceremony held 3 February 2014 in Bremen, Germany.

Comprising two missions that will be launched to Mars in 2016 and 2018, respectively, ExoMars will address the outstanding scientific question of whether life has ever existed on Mars by drilling the surface of the planet and analysing in situ the samples. The ExoMars programme will also demonstrate key technologies for entry, descent, landing, drilling and roving on the martian surface.

The Trace Gas Orbiter, or TGO, will be launched in 2016 along with Schiaparelli – the entry, descent and landing demonstrator module.

ExoMars’ Organic Sniffing Spectrometer

Lewis Dartnell spent the better part of two years researching and field-testing methods to reboot society in his best-selling book The Knowledge. But his day job is arguably even cooler: as an astrobiologist at the University of Leicester, he’s developing ways to look for life on Mars through the European Space Agency’s ExoMars mission. Here, Dartnell provides an update on the frequently delayed, yet scientifically promising mission.

Wired: In The Knowledge, you incorporate ideas and methods from many different branches of science. How does this kind of interconnectedness show up in your own work?

Dartnell: Drawing from lots of different sources is what I do in my own research in astrobiology, and not just knowledge, but the methods and techniques you could use. It’s not just biology, but engineering, and robotics and instruments as well as physics and planetary science, and you’re constantly outside of your comfort zone having to learn new things. It keeps you on your toes, but that’s what I enjoy about astrobiology.

Wired: What is your role with the ExoMars mission?

Dartnell: The exciting thing about ExoMars is that, not only will it for the first time have a drill so it can get properly underground on Mars and find stuff that has been protected from the surface environment, but it’s also going to use experiments like Raman spectroscopy, which is the one that I’m directly involved in at the University of Leicester. The reason Raman’s exciting is that it’s very sensitive and very competent and capable of picking up organic molecules or bio signatures of life, and we want to try this new technique on Mars.

Wired: What are your expectations for ExoMars?

Dartnell: We don’t know, and that’s the point of exploration; you don’t always know what you’re going to try and find. You know what you’re hoping for, and what might be realistic to expect. So what we hope to find on Mars are organic molecules – the basic Lego pieces or building blocks or chemistry kit for life; amino acids and sugars that should exist on Mars but we have yet to discover. Hopefully either NASA’s Curiosity or ESA’s ExoMars will discover those, and maybe beyond that they’ll find not just the building blocks for life but signs of life itself – biosignatures.

Wired: What kinds of biosignatures would be convincing as a sign of past life?

Dartnell: A biosignature is any sign or any evidence of life, and this might be something like a fossilised shape that looks a bit like a cell, it might be things as complex as DNA. It might be more subtle things like isotopic ratios in rocks, which on Earth are used to show early cases of life. Or if we do find things like amino acids, we can tell if they are made by life or through non-living processes like pre-biotic chemistry by their molecular handedness. So there are various quirks or various signs of organic molecules we can look for that would point to biology, rather than geochemical processes.

Wired: What is the likelihood that you will find biosignatures on Mars?

Dartnell: Unfortunately, you basically can’t answer that question. It’s somewhere between 0 and 1, but we don’t know because whenever you’re trying to do something in science you’re trying to do something new that you don’t already know the answer to,

However, for all we know about life on Earth, it seems to have arisen pretty rapidly. It seems like it might be a probable thing to happen, if you’ve got the right kind of environment. So the big question is whether Mars ever have the right kind of environment, and if so, did that basic pre-biotic chemistry ever get far enough down the line to produce cells? And if that happened, what might be the best way of looking for that life and trying to detect these biosignatures? Which biosignatures would still remain after all this time? This is the kind of thing we’re trying to do with ExoMars.



ExoMars 2016 mission launched from Baikonur.

ESA’s test rover begins exploring the Atacama Desert

ESA’s test rover has been fitted with scientific instruments  and made its first tracks in the sands of Chile’s Atacama Desert. Meanwhile, team members have explored the area to select a suitable site for testing, flying a drone to produce an aerial map.

This week’s Sample Acquisition Field Experiment with a Rover, or SAFER, field trial is gaining experience in remotely operating a Mars rover prototype equipped with scientific instruments. ESA has assembled an international industrial team for the trial, which takes place in the Mars-like Atacama, one of the driest places on Earth.

ESA’s 2018 ExoMars mission is acting as the ‘reference mission’ for the trial. The rover vehicle used for the trial, called ‘Bridget’, is provided by Astrium Stevenage in the UK. 

On Tuesday morning a trio of prototype ExoMars rover instruments was fitted to Bridget. The panoramic camera provides stereo 3D terrain imagery, the close-up camera works like a geologist’s hand-lens for high-resolution imaging, and the radar peers through soil for a detailed 3D view of the shallow subsurface beneath the rover.

On Monday evening, before the rover had been deployed in the field, panoramic images were sent to the control centre. Looking at them along with a digital elevation map, the remote control team had to make their first decision on the path to be taken by the rover the following day.

“The next morning, once the instruments were installed, this route was uploaded to the rover,” adds Michel. “It then began its first exploration, with some debugging and manual interventions needed along the way.

“Nevertheless, after a long working day that lasted until sunset, the data collected by the instruments were sent back to the control centre.”

Image credit: ESA/RAL Space

ExoMars lander module named Schiaparelli
External image
The entry, descent and landing demonstrator module that will fly on the 2016 ExoMars mission has been named ‘Schiaparelli’ in honour of the Italian astronomer Giovanni Schiaparelli, who famously mapped the Red Planet’s surface features in the 19th century.

Keep reading