Cassiopeia-A

2

submitted by @catch-bookerMeet the two idiot Wardens who decided to adopt Evra, Tauriel Mahariel and Cassiopeia Cousland. Mama warriors who will kick ass for their daughter (and of course the rambunctious small toddler mage).

anonymous asked:

Namjoon :)

8th person gets a conversation under the stars.

“That one’s Cassiopeia” you pointed at the bright constellation with its distinctive ’M’ shape, “it indicates where the North is, it’s really useful when you can’t see the North Star nor the Ursa Major.”
Namjoon stretched his arm out to grab your raised hand and brought it to his lip, pressing a kiss to its back. “I didn’t know you were interested in the stars.”
“Not really” you shrugged, “but I find it fascinating that the light we see comes from millions of years ago, from a time when we weren’t here; that some of these stars we’re seeing doesn’t exist anymore, they are now part of the matter that forms the universe… what if these constellations change with time when their light dissipate?”
Namjoon tried to stifle a laugh but you heard him. “Hey! What are you laughing at?” you nudged him.
“Nothing, it’s just that the boys always say that I talk nonsense but look at you.”
“It’s because you do talk nonsense” you retorted, glaring at him in the semi darkness.
“I guess we’re simply made for each other” he turned to look at you, resting on one arm. “So what if now I show you the stars?” Namjoon said, voice lowering an octave, and then it was your turn to try not to laugh at him.

4

Tattered Remnants of a Star

10,000 light-years away in the constellation of Cassiopeia, a massive star went supernova, collapsing under the weight of its own gravity and blowing its outer layers into space, causing its own explosive demise. Shattered fragments are all that remain of the star—a huge swirls of debris and stellar ejecta called Cassiopeia A. It contains gases of 10 million degrees Celsius, created when the supernova flung out materials that smashed into surrounding dust and gas at speeds of 16 million km/hour. Cas A is actually the strongest radio source in the sky beyond our solar system, and the images above show the remnants in both optical and X-ray wavelengths, capturing the complex, intricate structure of the debris, fascinating in its utter destruction. The false colours indicate chemical compositions: bright green filaments are rich in oxygen, red and purple are sulphur, and blue are hydrogen and nitrogen. The light of Cas A first reached Earth just 340 years ago, so it’s one of the youngest and freshest such remnants we know of in the Milky Way. Studying it will help us understand the evolution of the universe. But it still holds some mysteries—take a closer look at the last image, and note the small turquoise dot right in the centre. Astronomers believe this is a neutron star—an ultra-dense star created during the supernova. Years of observation have shown unexpected rapid cooling of the star, which is thought to be caused by superfluids in its dense core. Superfluids are extremely bizarre but super cool, and you can read more about them from NASA.

(Image credit: Hubble/Chandra)

Superfluid in Neutron Star’s Core

One of the most famous astronomical objects in the night sky is the Cassiopeia A supernova remnant. This image of Cassiopeia A was taken with NASA’s Chandra X-ray Observatory and shows three different energy bands of X-ray light. The white dot in the center of the image is Cassiopeia A’s neutron star. A neutron star is fast spinning, ultradense stellar remnant that’s left over after a massive star explodes. In fact, it’s the densest known object that is directly observable. Because it’s compressed by its immense gravitational field, a single teaspoon of neutron star material would weigh about 10 million tons. The pressure inside the core is high enough that most of the electrons there are forced into a degenerate state; they penetrate the atomic nuclei and fuse with protons, producing neutrons and a tremendous amount of energy, which is mainly radiated in the form of neutrinos. The rapid cooling in Cas A’s neutron star – through neutrino emission, suggests that the neutrons in its core are in a rare form of matter known as a superfluid. Superfluids are very strange, they are friction-free, can flow upward, escape airtight containers, and also behave as if they are a single particle.

For more information:

Credit: NASA/CXC/SAO

Cassiopeia A in a Million

One million seconds of x-ray image data were used to construct this view of supernova remnant Cassiopeia A, the expanding debris cloud from a stellar explosion. The stunningly detailed image from the Chandra Observatory will allow an unprecedented exploration of the catastrophic fate that awaits stars much more massive than the Sun.

Credit: U. Hwang (GSFC/UMD), J.M. Lamming (NRL), et al., CXC, NASA,

Exploring the third dimension of Cassiopeia A

One of the most famous objects in the sky - the Cassiopeia A supernova remnant - will be on display like never before, thanks to NASA’s Chandra X-ray Observatory and a new project from the Smithsonian Institution. A new three-dimensional (3D) viewer, being unveiled this week, will allow users to interact with many one-of-a-kind objects from the Smithsonian as part of a large-scale effort to digitize many of the Institutions objects and artifacts.

Scientists have combined data from Chandra, NASA’s Spitzer Space Telescope, and ground-based facilities to construct a unique 3D model of the 300-year old remains of a stellar explosion that blew a massive star apart, sending the stellar debris rushing into space at millions of miles per hour. The collaboration with this new Smithsonian 3D project will allow the astronomical data collected on Cassiopeia A, or Cas A for short, to be featured and highlighted in an open-access program – a major innovation in digital technologies with public, education, and research-based impacts.

To coincide with Cas A being featured in this new 3D effort, a specially-processed version of Chandra’s data of this supernova remnant is also being released. This new image shows with better clarity the appearance of Cas A in different energy bands, which will aid astronomers in their efforts to reconstruct details of the supernova process such as the size of the star, its chemical makeup, and the explosion mechanism. The color scheme used in this image is the following: low-energy X-rays are red, medium-energy ones are green, and the highest-energy X-rays detected by Chandra are colored blue.

Cas A is the only astronomical object to be featured in the new Smithsonian 3D project. This and other objects in the collection - including the Wright brothers plane, a 1,600-year-old stone Buddha, a gunboat from the Revolutionary War, and fossil whales from Chile – were being showcased in the Smithsonian X 3D event, taking place on November 13th and 14th at the Smithsonian in Washington, DC. In addition to new state-of-the-art 3D viewer, the public will be able to explore these objects through original videos, online tours, and other supporting materials.

Image credit: NASA/CXC/SAO

Alien State of Matter Found at Neutron Star Core of Cassiopeia A.


Evidence for a bizarre state of matter was identified in the dense core of an extinct star, a so-called neutron star, based on cooling observed over a decade of Chandra observations. NASA's Chandra X-ray Observatory discovered the first direct evidence for a superfluid, a bizarre, friction-free state of matter, at the core of Cassiopeia A.

Superfluids created in laboratories on Earth exhibit remarkable properties, such as the ability to climb upward and escape airtight containers. The finding has important implications for understanding nuclear interactions in matter at the highest known densities.

Neutron stars contain the densest known matter that is directly observable. One teaspoon of neutron star material weighs six billion tons. The pressure in the star’s core is so high that most of the charged particles, electrons and protons, merge resulting in a star composed mostly of uncharged particles called neutrons.

Two independent research teams studied the supernova remnant Cassiopeia A, or Cas A for short, the remains of a massive star 11,000 light years away that would have appeared to explode about 330 years ago as observed from Earth. Chandra data found a rapid decline in the temperature of the ultra-dense neutron star that remained after the supernova, showing that it had cooled by about four percent over a 10-year period.”

Continue…

3-D model lets you “fly through” a 300-year-old supernova

Check out the amazing new image that NASA just released of Cassiopeia A, the remains of a supernova that would have been visible from Earth 300 years ago. This new composite image was released to promote a new 3-D visualization tool that will allow more people to study Cas A.

The new 3-D model is a project of NASA’s Chandra X-Ray Observatory, which explains:

Scientists have combined data from Chandra, NASA’s Spitzer Space Telescope, and ground-based facilities to construct a unique 3D model of the 300-year old remains of a stellar explosion that blew a massive star apart, sending the stellar debris rushing into space at millions of miles per hour. The collaboration with this new Smithsonian 3D project will allow the astronomical data collected on Cassiopeia A, or Cas A for short, to be featured and highlighted in an open-access program — a major innovation in digital technologies with public, education, and research-based impacts.

To coincide with Cas A being featured in this new 3D effort, a specially-processed version of Chandra’s data of this supernova remnant is also being released. This new image shows with better clarity the appearance of Cas A in different energy bands, which will aid astronomers in their efforts to reconstruct details of the supernova process such as the size of the star, its chemical makeup, and the explosion mechanism. The color scheme used in this image is the following: low-energy X-rays are red, medium-energy ones are green, and the highest-energy X-rays detected by Chandra are colored blue.

See more details, including a guided tour of the 3-D visualization tool, over at the Chandra site.

NuSTAR untangles mystery of how stars explode

One of the biggest mysteries in astronomy, how stars blow up in supernova explosions, finally is being unraveled with the help of NASA’s Nuclear Spectroscopic Telescope Array (NuSTAR).

The high-energy X-ray observatory has created the first map of radioactive material in a supernova remnant. The results, from a remnant named Cassiopeia A (Cas A), reveal how shock waves likely rip apart massive dying stars.

“Stars are spherical balls of gas, and so you might think that when they end their lives and explode, that explosion would look like a uniform ball expanding out with great power,” said Fiona Harrison, the principal investigator of NuSTAR at the California Institute of Technology (Caltech) in Pasadena. “Our new results show how the explosion’s heart, or engine, is distorted, possibly because the inner regions literally slosh around before detonating.”

Cas A was created when a massive star blew up as a supernova, leaving a dense stellar corpse and its ejected remains. The light from the explosion reached Earth a few hundred years ago, so we are seeing the stellar remnant when it was fresh and young.

Supernovas seed the universe with many elements, including the gold in jewelry, the calcium in bones and the iron in blood. While small stars like our sun die less violent deaths, stars at least eight times as massive as our sun blow up in supernova explosions. The high temperatures and particles created in the blast fuse light elements together to create heavier elements.

NuSTAR is the first telescope capable of producing maps of radioactive elements in supernova remnants. In this case, the element is titanium-44, which has an unstable nucleus produced at the heart of the exploding star.

The NuSTAR map of Cas A shows the titanium concentrated in clumps at the remnant’s center and points to a possible solution to the mystery of how the star met its demise. When researchers simulate supernova blasts with computers, as a massive star dies and collapses, the main shock wave often stalls out and the star fails to shatter. The latest findings strongly suggest the exploding star literally sloshed around, re-energizing the stalled shock wave and allowing the star to finally blast off its outer layers.

Image credit: NASA/JPL-Caltech/CXC/SAO

3

#12. Cassiopeia A :) 

 

Cassiopeia A is the remnant of a supernova explosion that occured over 300 years ago in our Galaxy, at a distance of about 11,000 light years from us. Its name is derived from the constellation in which it is seen: Cassiopeia, the Queen. A supernova is the explosion that occurs at the end of a massive star’s life; and Cassiopeia A is the expanding shell of material that remains from such an explosion. This radio image of Cassiopeia A was created with the National Science Foundation’s Very Large Array telescope in New Mexico. This image was made at 3 different frequencies: 1.4 GHz (L band), 5.0 GHz (C band), and 8.4 GHz (X band). Cassiopeia A is one of the brightest radio sources in the sky, and has been a popular target of study for radio astronomers for decades. The material that was ejected from the supernova explosion can be seen in this image as bright filaments.

source