Melotte 15 in the Heart 

Cosmic clouds form fantastic shapes in the central regions of emission nebula IC 1805. The clouds are sculpted by stellar winds and radiation from massive hot stars in the nebula’s newborn star cluster, Melotte 15. About 1.5 million years young, the cluster stars are scattered in this colorful skyscape, along with dark dust clouds in silhouette against glowing atomic gas. A composite of narrowband and broadband telescopic images, the view spans about 15 light-years and includes emission from ionized hydrogen, sulfur, and oxygen atoms mapped to green, red, and blue hues in the popular Hubble Palette. Wider field images reveal that IC 1805’s simpler, overall outline suggests its popular name - The Heart Nebula. IC 1805 is located about 7,500 light years away toward the boastful constellation Cassiopeia.

Credit: Steve Cooper


Did Mars once have three moons?

“While the large Moon will be destined to be tidally destroyed and drawn to the surface through friction with Mars’ atmosphere, the other two moons could remain. Phobos and Deimos had a much larger sibling at some point in the past, but it may have lasted only for a few million years. After billions of years more, these two small moons remain. Perhaps in a few billion more, Phobos may be destroyed as well. If the new theory is right, a future scientist will only have Deimos and the basins on Mars to piece together this story from. It’s a stark reminder that in the Solar System and the Universe in general, the past is gone. All we have left to base its history on are the survivors.”

Compared to the other moons we know of in the Solar System, Mars’s two, Phobos and Deimos, are incredibly difficult to explain. They look like captured asteroids, being small, irregular, and exhibiting the right surface features. But captured asteroids form inclined or even retrograde orbits quite distant from their planet, while Phobos and Deimos live in circular, equatorial, close-in orbits to Mars. An alternative theory to the captured asteroid scenario is that the moons of Mars formed from a giant impact that kicked up a circumplanetary debris disk, similar to how Earth’s moon formed. But those scenarios never lead to merely two small moons; there’s always at least one large one. Thanks to a new simulation, all the pieces might finally be coming together.

Could Mars have had an inner, larger moon in the past that’s now decayed and collided back with the red planet? Get the story today!

Nebula Helix by Spitzer

This infrared image from NASA’s Spitzer Space Telescope shows the Helix Nebula. The nebula, located about 700 light-years away in the constellation Aquarius, belongs to a class of objects called planetary nebulae.

Image credit: NASA / Spitzer

Deep Magellanic Clouds Image Indicates Collisions : Did the two most famous satellite galaxies of our Milky Way Galaxy once collide? No one knows for sure, but a detailed inspection of deep images like that featured here give an indication that they have. Pictured, the Large Magellanic Cloud is on the bottom right. The surrounding field is monochrome color-inverted to highlight faint filaments, shown in gray. Perhaps surprisingly, the featured research-grade image was compiled with small telescopes to cover the large angular field nearly 40 degrees across. Much of the faint nebulosity is Galactic Cirrus clouds of thin dust in our own Galaxy, but a faint stream of stars does appear to be extending from the SMC toward the LMC. Also, stars surrounding the LMC appear asymmetrically distributed, indicating in simulations that they could well have been pulled off gravitationally in one or more collisions. Both the LMC and the SMC are visible to the unaided eye in southern skies. Future telescopic observations and computer simulations are sure to continue in a continuing effort to better understand the history of our Milky Way and its surroundings. via NASA


(Image)  NGC 5907 X-1: record-breaking pulsar

(ESA)  The Brightest, Furthest Pulsar In the Universe

ESA’s XMM-Newton has found a pulsar – the spinning remains of a once-massive star – that is a thousand times brighter than previously thought possible.

The pulsar is also the most distant of its kind ever detected, with its light travelling 50 million light-years before being detected by XMM-Newton.

Pulsars are spinning, magnetised neutron stars that sweep regular pulses of radiation in two symmetrical beams across the cosmos. If suitably aligned with Earth these beams are like a lighthouse beacon appearing to flash on and off as it rotates. They were once massive stars that exploded as a powerful supernova at the end of their natural life, before becoming small and extraordinarily dense stellar corpses.

Keep reading

Moon cycle page in my new (and first) Grimoire

I’ve loved the moon for as long as I can remember, and feel very calm when it’s around and it’s the first thing I look for when the sky turns black, so I felt that a page dedicated to its cycles and their names/connoting intentions was meant to be made 🙏🏻💜


Astronomers are borrowing principles applied in biology and archaeology to build a family tree of the stars in the galaxy. By studying chemical signatures found in the stars, they are piecing together these evolutionary trees looking at how the stars formed and how they are connected to each other. The signatures act as a proxy for DNA sequences. It’s akin to chemical tagging of stars and forms the basis of a discipline astronomers refer to as galactic archaeology.

It was Charles Darwin, who, in 1859 published his revolutionary theory that all life forms are descended from one common ancestor. This theory has informed evolutionary biology ever since but it was a chance encounter between an astronomer and an biologist over dinner at King’s College in Cambridge that got the astronomer thinking about how it could be applied to stars in the Milky Way.

Writing in Monthly Notices of the Royal Astronomical Society, Dr. Paula Jofré, of the University of Cambridge’s Institute of Astronomy, describes how she set about creating a phylogenetic “tree of life” that connects a number of stars in the galaxy.

“The use of algorithms to identify families of stars is a science that is constantly under development. Phylogenetic trees add an extra dimension to our endeavours which is why this approach is so special. The branches of the tree serve to inform us about the stars’ shared history,” she says.

The team picked 22 stars, including the Sun, to study. The chemical elements have been carefully measured from data coming from ground-based high-resolution spectra taken with large telescopes located in the north of Chile. Once the families were identified using the chemical DNA, their evolution was studied with the help of their ages and kinematical properties obtained from the space mission Hipparcos, the precursor of Gaia, the spacecraft orbiting Earth that was launched by the European Space Agency and is almost halfway through a 5-year project to map the sky.

Stars are born from violent explosions in the gas clouds of the galaxy. Two stars with the same chemical compositions are likely to have been born in the same molecular cloud. Some live longer than the age of the universe and serve as fossil records of the composition of the gas at the time they were formed. The oldest star in the sample analysed by the team is estimated to be almost ten billion years old, which is twice as old as the Sun. The youngest is 700 million years old.

In evolution, organisms are linked together by a pattern of descent with modification as they evolve. Stars are very different from living organisms, but they still have a history of shared descent as they are formed from gas clouds, and carry that history in their chemical structure. By applying the same phylogenetic methods that biologists use to trace descent in plants and animals it is possible to explore the ‘evolution’ of stars in the galaxy.

“The differences between stars and animals is immense, but they share the property of changing over time, and so both can be analysed by building trees of their history,” says Professor Robert Foley, of the Leverhulme Centre for Human Evolutionary Studies at Cambridge.

With an increasing number of datasets being made available from both Gaia and more advanced telescopes on the ground, and on-going and future large spectroscopic surveys, astronomers are moving closer to being able to assemble one tree that would connect all the stars in the Milky Way.


Airglow waves. Do you you think our night sky is pitch black ? Have a look at this timelapse video. I captured it at Carnegie Las Campamas observatory. Those red waves are not clouds (!) - this is pretty intense airglow, which takes place in upper atmosphere. It’s very interesting to see how the waves move. While camera pans you will notice on the foreground both 6.5-m Magellan telescopes, as well as nicely setting Milky Way. I hope you’ll enjoy the view ! :) Music: “Airglow” by © Club 220