5194

The Whirlpool Galaxy and Beyond : Follow the handle of the Big Dipper away from the dippers bowl, until you get to the handles last bright star. Then, just slide your telescope a little south and west and you might find this stunning pair of interacting galaxies, the 51st entry in Charles Messiers famous catalog. Perhaps the original spiral nebula, the large galaxy with well defined spiral structure is also cataloged as NGC 5194. Its spiral arms and dust lanes clearly sweep in front of its companion galaxy , NGC 5195. The pair are about 31 million light-years distant and officially lie within the angular boundaries of the small constellation Canes Venatici. Though M51 looks faint and fuzzy to the human eye, the above long-exposure, deep-field image taken earlier this year shows much of the faint complexity that actually surrounds the smaller galaxy. Thousands of the faint dots in background of the featured image are actually galaxies far across the universe. via NASA

js

New images from NASA’s Hubble Space Telescope are helping researchers view in unprecedented detail the spiral arms and dust clouds of a nearby galaxy, which are the birth sites of massive and luminous stars.

The Whirlpool galaxy, M51, has been one of the most photogenic galaxies in amateur and professional astronomy. Easily photographed and viewed by smaller telescopes, this celestial beauty is studied extensively in a range of wavelengths by large ground- and space-based observatories. This Hubble composite image shows visible starlight as well as light from the emission of glowing hydrogen, which is associated with the most luminous young stars in the spiral arms.

M51, also known as NGC 5194, is having a close encounter with a nearby companion galaxy, NGC 5195, just off the upper edge of this image. The companion’s gravitational pull is triggering star formation in the main galaxy, as seen in brilliant detail by numerous, luminous clusters of young and energetic stars. The bright clusters are highlighted in red by their associated emission from glowing hydrogen gas.

This Wide Field Planetary Camera 2 image enables a research group, led by Nick Scoville (Caltech), to clearly define the structure of both the cold dust clouds and the hot hydrogen and link individual clusters to their parent dust clouds. Team members include M. Polletta (U. Geneva); S. Ewald and S. Stolovy (Caltech); R. Thompson and M. Rieke (U. of Arizona).

Intricate structure is also seen for the first time in the dust clouds. Along the spiral arms, dust “spurs” are seen branching out almost perpendicular to the main spiral arms. The regularity and large number of these features suggests to astronomers that previous models of “two-arm” spiral galaxies may need to be revisited. The new images also reveal a dust disk in the nucleus, which may provide fuel for a nuclear black hole.

The team is also studying this galaxy at near-infrared wavelengths with the NICMOS instrument onboard Hubble. At these wavelengths, the dusty clouds are more transparent and the true distribution of stars is more easily seen. In addition, regions of star formation that are obscured in the optical images are newly revealed in the near-infrared images.

This image was composed by the Hubble Heritage Team from Hubble archival data of M51 and is superimposed onto ground-based data taken by Travis Rector (NOAO) at the 0.9-meter telescope at the National Science Foundation’s Kitt Peak National Observatory (NOAO/AURA) in Tucson, AZ.

Object Names: The Whirlpool Galaxy, M51

Image Type: Astronomical

Image Credit: NASA and The Hubble Heritage Team (STScI/AURA)

Acknowledgment: N. Scoville (Caltech) and T. Rector (NOAO)

Time And Space

Dwarf galaxy NGC 5195 is best known as the smaller companion of spiral M51, the Whirlpool galaxy. Dwarfed by enormous M51 (aka NGC 5194), NGC 5195 spans about 20,000 light-years. A close encounter with M51 has likely triggered star formation and enhanced that galaxy’s prominent spiral arms. Processed from image data available in the Hubble Legacy Archive, this majestic close-up of NGC 5195 makes it clear that the dwarf galaxy now lies behind M51. The pair of interacting galaxies lie some 30 million light-years away, toward the handle of the Big Dipper, and the constellation of the Hunting Dogs.

Stardust

M51: The Whirlpool Galaxy : Follow the handle of the Big Dipper away from the dippers bowl until you get to the handles last bright star. Then, just slide your telescope a little south and west and you might find this stunning pair of interacting galaxies, the 51st entry in Charles Messier famous catalog. Perhaps the original spiral nebula, the large galaxy with well defined spiral structure is also cataloged as NGC 5194. Its spiral arms and dust lanes clearly sweep in front of its companion galaxy , NGC 5195. The pair are about 31 million light-years distant and officially lie within the angular boundaries of the small constellation Canes Venatici. Though M51 looks faint and fuzzy to the eye, deep images like this one can reveal striking colors and the faint tidal debris around the smaller galaxy via NASA

js

The whirl of stellar life

The Whirlpool Galaxy, also known as M51 or NGC 5194, is one of the most spectacular examples of a spiral galaxy. With two spiral arms curling into one another in a billowing swirl, this galaxy hosts over a hundred billion stars and is currently merging with its companion, the smaller galaxy NGC 5195.

Around 30 million light-years away, the Whirlpool Galaxy is close enough to be easily spotted even with binoculars. Using the best telescopes available both on the ground and in space, astronomers can scrutinise its population of stars in extraordinary detail.

In this image, observations performed at three different wavelengths with ESA’s Herschel and XMM-Newton space telescopes are combined to reveal how three generations of stars coexist in the Whirlpool Galaxy.

The infrared light collected by Herschel – shown in red and yellow – reveals the glow of cosmic dust, which is a minor but crucial ingredient in the interstellar material in the galaxy’s spiral arms. This mixture of gas and dust provides the raw material from which the Whirlpool Galaxy’s future generations of stars will take shape.

Observing in visible and ultraviolet light, astronomers can see the current population of stars in the Whirlpool Galaxy, since stars in their prime shine most brightly at shorter wavelengths than infrared. Seen at ultraviolet wavelengths with XMM-Newton and portrayed in green in this composite image are the galaxy’s fiercest stellar inhabitants: young and massive stars pouring powerful winds and radiation into their surroundings.

The image also shows the remains of previous stellar generations, which shine brightly in X-rays and were detected by XMM-Newton. Shown in blue, these sources of X-rays are either the sites where massive stars exploded as supernovae in the past several thousand years, or binary systems that host neutron stars or black holes, the compact objects left behind by supernovae.

Image credit & copyright: ESA / Herschel / XMM-Newton. Acknowledgements: “Physical Processes in the Interstellar Medium of Very Nearby Galaxies” Key Programme, Christine Wilson

M51: X-Rays from the Whirlpool

What if we X-rayed an entire spiral galaxy? This was done (again) recently by NASA’s Chandra X-ray Observatory for the nearby interacting galaxies known as the Whirlpool (M51). Hundreds of glittering x-ray stars are present in the above Chandra image of the spiral and its neighbor. The image is a conglomerate of X-ray light from Chandra and visible light from the Hubble Space Telescope. The number of luminous x-ray sources, likely neutron star and black hole binary systems within the confines of M51, is unusually high for normal spiral or elliptical galaxies and suggests this cosmic whirlpool has experienced intense bursts of massive star formation. The bright cores of both galaxies, NGC 5194 and NGC 5195, also exhibit high-energy activity. In this false-color image where X-rays are depicted in purple, diffuse X-ray emission typically results from multi-million degree gas heated by supernova explosions.

Image Credit & Copyright: X-ray: NASA, CXC, R. Kilgard (Wesleyan U. et al.; Optical: NASA, STScI