''quantum

4

Quantum computers have arrived.  

First there was the mainframe, then came the personal computer, now we’ve reached a new monumental landmark in the history of technology. For the first time ever, IBM aims to bring universal quantum computers out of the lab and into the commercial realm. Projected to sift through vast possibilities and data, to choose the perfect option or discover unseen patterns, quantum computing is poised to drive a new era of innovation across industries. This means that some of the world’s most complex problems now have a chance of being solved. And as the quantum eco-system grows, a seemingly impossible kind of physics could start to make the most incredible things possible.

Learn More →

13.05.17 // Updated my physics window for the first time in ages! Had some thoughts over the past few weeks surrounding a free scalar field universe model so I drew them up as well as some old game theory because I watched a Beautiful Mind and felt nostalgic. I hope you are all having wonderful days / evening / whatever plane of existentialism you currently observe 😉

Council of Ricks just admiring their Morty…w-while their society is ending. Idk, I just enjoyed watching the first episode of Season 3 of Rick and Morty okay X”DD I really wanted to see Lawyer Morty’s pog collection too ; w ; AGH!! Love this show I swear!! <3

More fanart of Rick and Morty coming soon~

nature.com
The quest to crystallize time
Bizarre forms of matter called time crystals were supposed to be physically impossible. Now they’re not.

Christopher Monroe spends his life poking at atoms with light. He arranges them into rings and chains and then massages them with lasers to explore their properties and make basic quantum computers. Last year, he decided to try something seemingly impossible: to create a time crystal.

The name sounds like a prop from Doctor Who, but it has roots in actual physics. Time crystals are hypothetical structures that pulse without requiring any energy — like a ticking clock that never needs winding. The pattern repeats in time in much the same way that the atoms of a crystal repeat in space. The idea was so challenging that when Nobel prizewinning physicist Frank Wilczek proposed the provocative concept1 in 2012, other researchers quickly proved there was no way to create time crystals.

But there was a loophole — and researchers in a separate branch of physics found a way to exploit the gap. Monroe, a physicist at the University of Maryland in College Park, and his team used chains of atoms they had constructed for other purposes to make a version of a time crystal2 (see ‘How to create a time crystal’). “I would say it sort of fell in our laps,” says Monroe.

And a group led by researchers at Harvard University in Cambridge, Massachusetts, independently fashioned time crystals out of 'dirty’ diamonds3. Both versions, which are published this week in Nature, are considered time crystals, but not how Wilczek originally imagined. “It’s less weird than the first idea, but it’s still fricking weird,” says Norman Yao, a physicist at the University of California, Berkeley, and an author on both papers.

Continue Reading.