everyone until the 17th of december:
roses are red
i wanna be dead
violets are blue
damn bitch me too
Gobble Up These Black (Hole) Friday Deals!
Welcome to our 6th annual annual Black Hole Friday! Check out these black hole deals from the past year as you prepare to head out for a shopping spree or hunker down at home to avoid the crowds.
First things first, black holes have one basic rule: They are so incredibly dense that to escape their surface you’d have to travel faster than light. But light speed is the cosmic speed limit … so nothing can escape a black hole’s surface!
Black hole birth announcements
Some black holes form when a very large star dies in a supernova explosion and collapses into a superdense object. This is even more jam-packed than the crowds at your local mall — imagine an object 10 times more massive than the Sun squeezed into a sphere with the diameter of New York City!
Some of these collapsing stars also signal their destruction with a huge burst of gamma rays. Our Fermi Gamma-ray Space Telescope and Neil Gehrels Swift Observatory continuously seek out the signals of these gamma ray bursts — black hole birth announcements that come to us from across the universe.
NICER black holes
There are loads of stellar mass black holes, which are just a few 10s of times the Sun’s mass, in our home galaxy alone — maybe even hundreds of millions of them! Our Neutron Star Interior Composition Explorer, or NICER for short, experiment on the International Space Station has been studying some of those relatively nearby black holes.
Near one black hole called GRS 1915+105, NICER found disk winds — fast streams of gas created by heat or pressure. Scientists are still figuring out some puzzles about these types of wind. Where do they come from, for example? And do they change the way material falls into the black hole? Every new example of these disk winds helps astronomers get closer to answering those questions.
Merging monster black holes
But stellar mass black holes aren’t the only ones out there. At the center of nearly every large galaxy lies a supermassive black hole — one with the mass of millions or billions of Suns smooshed into a region no bigger than our solar system.
There’s still some debate about how these monsters form, but astronomers agree that they certainly can collide and combine when their host galaxies collide and combine. Those black holes will have a lot of gas and dust around them. As that material is pulled into the black hole it will heat up due to friction and other forces, causing it to emit light. A group of scientists wondered what light it would produce and created this mesmerizing visualization showing that most of the light produced around these two black holes is UV or X-ray light. We can’t see those wavelengths with our own eyes, but many telescopes can. Models like this could help scientists know what to look for to spot a merger.
Black holes power bright gamma ray lights
It also turns out that these supermassive black holes are the source of some of the brightest objects in the gamma ray sky! In a type of galaxy called active galactic nuclei (also called “AGN” for short) the central black hole is surrounded by a disk of gas and dust that’s constantly falling into the black hole.
But not only that, some of those AGN have jets of energetic particles that are shooting out from near the black hole at nearly the speed of light! Scientists are studying these jets to try to understand how black holes — which pull everything in with their huge amounts of gravity — provide the energy needed to propel the particles in these jets. If that jet is pointed directly at us, it can appear super-bright in gamma rays and we call it a blazar. These blazars make up more than half of the sources our Fermi space telescope sees.
Catching particles from near a black hole
Sometimes scientists get a two-for-one kind of deal when they’re looking for black holes. Our colleagues at the IceCube Neutrino Observatory actually caught a particle from a blazar 4 billion light-years away. IceCube lies a mile under the ice in Antarctica and uses the ice itself to detect neutrinos, tiny speedy particles that weigh almost nothing and rarely interact with anything. When IceCube caught a super-high-energy neutrino and traced its origin to a specific area of the sky, they turned to the astronomical community to pinpoint the source.
Our Fermi spacecraft scans the entire sky about every three hours and for months it had observed a blazar producing more gamma rays than usual. Flaring is a common characteristic in blazars, so this didn’t attract special attention. But when the alert from IceCube came through, scientists realized the neutrino and the gamma rays came from the same patch of sky! This method of using two or more kinds of signals to learn about one event or object is called multimessenger astronomy, and it’s helping us learn a lot about the universe.
Get more fun facts and information about black holes HERE and follow us on social media today for other cool facts and findings about black holes!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The Trifid Nebula in Stars and Dust
Credit: Adam Block, Mt. Lemmon SkyCenter, U. Arizona
adrift
how fucking dare you not put garlic bread first bitch
Think about this
Shrek has LAYERS
im p sure everyone saw something different in their head when they read this
Art By: Andrzej Dybowski
Instagram: @artwoonz
Needed this to cheer up–
please watch with sound on
That’s Cumlord! You can find his page on Facebook!!
that’s what
WHOMST
nasa Great ball of fire! 🔥 This close-up view of the Sun is from a two-hour period on August 13, 2018, showing a minor eruption of charged particles rising up and twisting about before falling back into the Sun. Captured in extreme ultraviolet light, these kinds of events are difficult to see except when they occur along the sun’s edge. At its peak, the plasma rises to heights that are several times the diameter of Earth. We use the Solar Dynamics Observatory, which captured this view, to better understand the Sun’s influence on Earth and near-Earth space by studying the solar atmosphere in many wavelengths simultaneously. This allows us to better understand the solar variations that influence life on Earth and humanity’s technological systems by looking for solar wind, energetic particles, and variations in the solar irradiance that lead to better predictions of space weather events. Credit: NASA/SDO
Astronaut tweets
What’s a Blood Moon? And Other Lunar Eclipse Questions.
Tonight, Australians, Africans, Europeans, Asians and South Americans will have the opportunity to see the longest lunar eclipse of the century. Sorry North America.
Lunar eclipses occur about 2-4 times per year, when the Moon passes into the Earth’s shadow. In order to see a lunar eclipse, you must be on the night side of the Earth, facing the Moon, when the Earth passes in between the Moon and the Sun. Need help visualizing this? Here you go:
What’s the difference between a solar eclipse and a lunar eclipse?
An easy way to remember the difference between a solar eclipse and a lunar eclipse is that the word ‘eclipse’ refers to the object that is being obscured. During a solar eclipse, the Moon blocks the Sun from view. During a lunar eclipse, the Earth’s shadow obscures the Moon.
Why does the Moon turn red?
You may have heard the term ‘Blood Moon’ for a lunar eclipse. When the Moon passes into the Earth’s shadow, it turns red. This happens for the exact same reason that our sunrises and sunsets here on Earth are brilliant shades of pinks and oranges. During a lunar eclipse, the only light reaching the Moon passes through the Earth’s atmosphere. The bluer, shorter wavelength light scatters and the longer wavelength red light passes through and makes it to the Moon.
What science can we learn from a lunar eclipse?
“During a lunar eclipse, the temperature swing is so dramatic that it’s as if the surface of the Moon goes from being in an oven to being in a freezer in just a few hours,” said Noah Petro, project scientist for our Lunar Reconnaissance Orbiter, or LRO, at our Goddard Space Flight Center in Greenbelt, Maryland.
The Diviner team from LRO measures temperature changes on the Moon through their instrument on the spacecraft as well as through a thermal camera on Earth. How quickly or slowly the lunar surface loses heat helps scientists determine characteristics of lunar material, including its composition and physical properties.
When is the next lunar eclipse?
North Americans, don’t worry. If skies are clear, you can see the next lunar eclipse on January 21, 2019. The eclipse will be visible to North Americans, South Americans, and most of Africa and Europe.
To keep an eye on the Moon with us check out nasa.gov/moon or follow us on Twitter and Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The image shows a pair of colossal stars, WR 25 and Tr16-244, located within the open cluster Trumpler 16. This cluster is embedded within the Carina Nebula, an immense cauldron of gas and dust that lies approximately 7500 light-years from Earth in the constellation of Carina, the Keel. WR 25 is the brightest, situated near the centre of the image. The neighbouring Tr16-244 is the third brightest, just to the upper left of WR 25. The second brightest, to the left of WR 25, is a low mass star located much closer to the Earth than the Carina Nebula.
Credit: NASA, ESA and Jesús Maíz Apellániz (Instituto de Astrofísica de Andalucía, Spain)
Stop littering!!
I’m still not over this, THIS is what big dick energy means
let me sleep in ur stupid t-shirts and hold ur dumb hand u piece of shit
Just an experiment. Reblog if you actually give a fuck about male victims of domestic violence and rape.
we miss 100% of the sips we dont take, babes
I’m glad the west ran out of cat memes, so now we have to import them from Russia and Japan



