Hello. So what's the deal with computer chips? Let's say, for example, that I wanted to build a brand new Sega Genesis. Ignoring firmware and software, what's stopping me from dissecting their proprietary chips and reverse-engineering them to make new ones? It's just electric connections and such inside, isn't it? If I match the pin ins and outs, shouldn't it be easy? So why don't people do it?
The answer is that people totally used to do this, there's several examples of chips being cloned and used to build compatible third-party hardware, the most famous two examples being famiclones/NESclones and Intel 808X clones.
AMD is now a major processor manufacturer, but they took off in the 70's by reverse-engineering Intel's 8080 processor. Eventually they were called in to officially produce additional 8086 chips under license to meet burgeoning demand for IBM PC's, but that was almost a decade later if I remember correctly.
There were a ton of other 808X clones, like the Soviet-made pin-compatible K1810VM86. Almost anyone with a chip fab was cloning Intel chips back in the 80's, a lot of it was in the grey area of reverse engineering the chips.
Companies kept cloning Intel processors well into the 386 days, but eventually the processors got too complicated to easily clone, and so only companies who licensed designs could make them, slowly reducing the field down to Intel, AMD, and Via, who still exist! Via's CPU division currently works on the Zhaoxin x86_64 processors as part of the ongoing attempts to homebrew a Chinese-only x86 processor.
I wrote about NES clones a while ago, in less detail, so here's that if you want to read it:
Early famiclones worked by essentially reverse-engineering or otherwise cloning the individual chips inside an NES/famicom, and just reconstructing a compatible device from there. Those usually lacked any of the DRM lockout chips built into the original NES, and were often very deeply strange, with integrated clones of official peripherals like the keyboard and mouse simply hardwired directly into the system.
These were sold all over the world, but mostly in developing economies or behind the Iron Curtain where official Nintendo stuff was harder to find. I had a Golden China brand Famiclone growing up, which was a common famiclone brand around South Africa.
Eventually the cost of chip fabbing came down and all those individual chips from the NES were crammed onto one cheap piece of silicon and mass produced for pennies each, the NES-on-a-chip. With this you could turn anything into an NES, and now you could buy a handheld console that ran pirated NES game for twenty dollars in a corner store. In 2002. Lots of edutainment mini-PC's for children were powered by these, although now those are losing out to Linux (and now Android) powered tablets a la Leapfrog.
Nintendo's patents on their hardware designs expired throughout the early 2000's and so now the hardware design was legally above board, even if the pirated games weren't. You can still find companies making systems that rely on these NES chips, and there are still software houses specializing in novel NES games.
Why doesn't this really happen anymore? Well, mostly CPU's and their accoutrements are too complicated. Companies still regularly clone their competitors simpler chips all the time, and I actually don't know if Genesis clones exist, it's only a Motorola 68000k, but absolutely no one is cloning a modern Intel or AMD processor.
The die of a Motorola 68000 (1979)
A classic Intel 8080 is basically the kind of chip you learn about in entry level electrical engineering, a box with logic gates that may be complicated, but pretty straightforwardly fetches things from memory, decodes, executes, and stores. A modern processor is a magic pinball machine that does things backwards and out of order if it'll get you even a little speedup, as Mickens puts it in The Slow Winter:
I think that it used to be fun to be a hardware architect. Anything that you invented would be amazing, and the laws of physics were actively trying to help you succeed. Your friend would say, “I wish that we could predict branches more accurately,” and you’d think, “maybe we can leverage three bits of state per branch to implement a simple saturating counter,” and you’d laugh and declare that such a stupid scheme would never work, but then you’d test it and it would be 94% accurate, and the branches would wake up the next morning and read their newspapers and the headlines would say OUR WORLD HAS BEEN SET ON FIRE. You’d give your buddy a high-five and go celebrate at the bar, and then you’d think, “I wonder if we can make branch predictors even more accurate,” and the next day you’d start XOR’ing the branch’s PC address with a shift register containing the branch’s recent branching history, because in those days, you could XOR anything with anything and get something useful, and you test the new branch predictor, and now you’re up to 96% accuracy, and the branches call you on the phone and say OK, WE GET IT, YOU DO NOT LIKE BRANCHES, but the phone call goes to your voicemail because you’re too busy driving the speed boats and wearing the monocles that you purchased after your promotion at work. You go to work hung-over, and you realize that, during a drunken conference call, you told your boss that your processor has 32 registers when it only has 8, but then you realize THAT YOU CAN TOTALLY LIE ABOUT THE NUMBER OF PHYSICAL REGISTERS, and you invent a crazy hardware mapping scheme from virtual registers to physical ones, and at this point, you start seducing the spouses of the compiler team, because it’s pretty clear that compilers are a thing of the past, and the next generation of processors will run English-level pseudocode directly.
Die shot of a Ryzen 5 2600 (2019)
Nowadays to meet performance parity you can't just be pin-compatible and run at the right frequency, you have to really do a ton of internal logical optimization that is extremely opaque to the reverse engineer. As mentioned, Via is making the Zhaoxin stuff, they are licensed, they have access to all the documentation needed to make an x86_64 processor, and their performance is still barely half of what Intel and AMD can do.
Companies still frequently clone each others simpler chips, charge controllers, sensor filters, etc. but the big stuff is just too complicated.
So thin!
Wouldya lookit that flying clipping error
"You know, we thought that raw exposure had rendered helicopters too normal and relaxing to the general public, and we had to do something about that."
Counter-rotating blades, hence no tail rotor, hence more efficient. But still
I get the counter rotating blades, my question is more why it's so narrow. Aerodynamics? Is it trying to be fast, or is it just intended to be a kind of minimal cheap helicopter, but who the hell is buying a, what looks like, one person helicopter, while being notably price sensitive
Apparently it's mainly for picking up external cargo, so having internal cargo or passenger area probably isn't necessary. Less weight and more aerodynamic that way, too.
Neat stuff!
I cannot put into words how much I Fucking Loathe the fact that when you search something on youtube now it will randomly intersperse blocks of "people also watched" and "for you" into the results. That's not what I searched for, youtube. I typed in a search query because I wanted to see search results, not random unrelated garbage you have placed in my way apparently to either inconvenience me or force me to scroll further for actual results. I despise your wretched little games and every time I see it I can only instantly close the tab as I am overcome with the urge to burn something down.
"I despise your wretched little games" perfectly conveys how I feel about the entire algorithm/attention economy
Ballad of Weird Dog
a song + video featuring hundreds of weird dog drawings by VIEWERS LIKE YOU
Random fact: Although jumping spiders can't move their eyes, they can move their retinas to change their field of view. It's as if they're looking through a window.
If the spider is clear enough, you can even see the retinas moving through the cephalothorax:
Image sources: Melvyn Yeo, M.F. Land, and wmaddisn
Guess who taught himself how to open the rice cooker and woke me up by screaming in between mouthfuls of hot rice
Of the things that have bit me, I've got to say flamingos really do have the most charming little nibble.
In plant biology, Vavilovian mimicry (also crop mimicry or weed mimicry[1][a]) is a form of mimicry in plants where a weed evolves to share one or more characteristics with a domesticated plant through generations of artificial selection.[2] It is named after Nikolai Vavilov, a prominent Russian plant geneticist.[2] Selection against the weed may occur by killing a young or adult weed, separating its seeds from those of the crop (winnowing), or both. This has been done manually since Neolithic times, and in more recent years by agricultural machinery.
Vavilovian mimicry is a good illustration of unintentional selection by humans. Although the human selective agents might be conscious of their impact on the local weed gene pool, such effects go against the goals of those growing crops. Weeders do not want to select for weeds that are increasingly similar to the cultivated plant, yet the only other option is to let the weeds grow and compete with crops for sunlight and nutrients. Similar situations include antibiotic resistance and, also in agricultural crops, herbicide resistance. Having acquired many desirable qualities by being subjected to similar selective pressures, Vavilovian mimics may eventually be domesticated themselves. Vavilov called these weeds-become-crops secondary crops.
…
Another example is rye (Secale cereale), a grass which is derived from wild rye (Secale montanum), a widely distributed Mediterranean species. Rye was originally just a weed growing with wheat and barley, but came under similar selective pressures to the crops. Like wheat, it came to have larger seeds and more rigid spindles to which the seeds are attached. However, wheat is an annual plant, while wild rye is a perennial. At the end of each growing season wheat produces seeds, while wild rye does not and is thus destroyed as the post-harvest soil is tilled. However, there are occasional mutants that do set seed. These have been protected from destruction, and rye has thus evolved to become an annual plant.[5]
Rye is a hardier plant than wheat, surviving in harsher conditions. Having become preadapted as a crop through wheat mimicry, rye was then positioned to become a cultivated plant in areas where soil and climatic conditions favored its production, such as mountainous terrain.[4]
This fate is shared by oats (Avena sativa and Avena byzantina), which also tolerate poorer conditions, and like rye, grow as a weed alongside wheat and barley. Derived from a wild species (Avena sterilis), it has thus come to be a crop in its own right. Once again paralleling wheat, rye and other cereals, oats have developed tough spindles which prevent seeds from easily dropping off, and other characteristics which also help in natural dispersal have become vestigial, including the awns which allow them to self bury.[4]
Huh, I never considered that. Evolution wins yet again
This is what the porn bots are currently in the process of doing
Unmute !
man, humans fuckin love drums
In plant biology, Vavilovian mimicry (also crop mimicry or weed mimicry[1][a]) is a form of mimicry in plants where a weed evolves to share one or more characteristics with a domesticated plant through generations of artificial selection.[2] It is named after Nikolai Vavilov, a prominent Russian plant geneticist.[2] Selection against the weed may occur by killing a young or adult weed, separating its seeds from those of the crop (winnowing), or both. This has been done manually since Neolithic times, and in more recent years by agricultural machinery.
Vavilovian mimicry is a good illustration of unintentional selection by humans. Although the human selective agents might be conscious of their impact on the local weed gene pool, such effects go against the goals of those growing crops. Weeders do not want to select for weeds that are increasingly similar to the cultivated plant, yet the only other option is to let the weeds grow and compete with crops for sunlight and nutrients. Similar situations include antibiotic resistance and, also in agricultural crops, herbicide resistance. Having acquired many desirable qualities by being subjected to similar selective pressures, Vavilovian mimics may eventually be domesticated themselves. Vavilov called these weeds-become-crops secondary crops.
…
Another example is rye (Secale cereale), a grass which is derived from wild rye (Secale montanum), a widely distributed Mediterranean species. Rye was originally just a weed growing with wheat and barley, but came under similar selective pressures to the crops. Like wheat, it came to have larger seeds and more rigid spindles to which the seeds are attached. However, wheat is an annual plant, while wild rye is a perennial. At the end of each growing season wheat produces seeds, while wild rye does not and is thus destroyed as the post-harvest soil is tilled. However, there are occasional mutants that do set seed. These have been protected from destruction, and rye has thus evolved to become an annual plant.[5]
Rye is a hardier plant than wheat, surviving in harsher conditions. Having become preadapted as a crop through wheat mimicry, rye was then positioned to become a cultivated plant in areas where soil and climatic conditions favored its production, such as mountainous terrain.[4]
This fate is shared by oats (Avena sativa and Avena byzantina), which also tolerate poorer conditions, and like rye, grow as a weed alongside wheat and barley. Derived from a wild species (Avena sterilis), it has thus come to be a crop in its own right. Once again paralleling wheat, rye and other cereals, oats have developed tough spindles which prevent seeds from easily dropping off, and other characteristics which also help in natural dispersal have become vestigial, including the awns which allow them to self bury.[4]
Huh, I never considered that. Evolution wins yet again
This is what the porn bots are currently in the process of doing





