xenon

Xenon exposure shown to erase traumatic memories

McLean Hospital researchers are reporting that xenon gas, used in humans for anesthesia and diagnostic imaging, has the potential to be a treatment for post-traumatic stress disorder (PTSD) and other memory-related disorders.

“In our study, we found that xenon gas has the capability of reducing memories of traumatic events,” said Edward G. Meloni, PhD, assistant psychologist at McLean Hospital and an assistant professor of Psychiatry at Harvard Medical School. “It’s an exciting breakthrough, as this has the potential to be a new treatment for individuals suffering from PTSD.”

Edward G. Meloni, Timothy E. Gillis, Jasmine Manoukian, Marc J. Kaufman. Xenon Impairs Reconsolidation of Fear Memories in a Rat Model of Post-Traumatic Stress Disorder (PTSD). PLoS ONE, 2014; 9 (8): e106189 DOI: 10.1371/journal.pone.0106189

4

The Bitmap Brothers: Universe

Kickstarter campaign for latest Read Only Memory publication on the British forward-thinking video game development team The Bitmap Brothers who in the 16-Bit home computer era were the Rockstar Games of their time:

The Bitmap Brothers: Universe will be the official history of the visionary British software house. The book will combine an authoritatively written inside story, thoroughly researched via new, first-hand interviews with The Bitmap Brothers’ key figures, with a breathtaking haul of never-before-seen archive material, including original production drawings and digital artwork from seminal titles such as Xenon 2: Megablast, Speedball 2: Brutal Deluxe and The Chaos Engine

More Here

Xenon Exposure Shown to Erase Traumatic Memories

McLean Hospital researchers are reporting that xenon gas, used in humans for anesthesia and diagnostic imaging, has the potential to be a treatment for post-traumatic stress disorder (PTSD) and other memory-related disorders.

“In our study, we found that xenon gas has the capability of reducing memories of traumatic events,” said Edward G. Meloni, PhD, assistant psychologist at McLean Hospital and an assistant professor of Psychiatry at Harvard Medical School. “It’s an exciting breakthrough, as this has the potential to be a new treatment for individuals suffering from PTSD.”

In the study, published in the current issue of PLOS ONE, Meloni, and Marc J. Kaufman, PhD, director of the McLean Hospital Translational Imaging Laboratory, examined whether a low concentration of xenon gas could interfere with a process called reconsolidation – a state in which reactivated memories become susceptible to modification. “We know from previous research that each time an emotional memory is recalled, the brain actually restores it as if it were a new memory. With this knowledge, we decided to see whether we could alter the process by introducing xenon gas immediately after a fear memory was reactivated,” explained Meloni.

The investigators used an animal model of PTSD called fear-conditioning to train rats to be afraid of environmental cues that were paired with brief footshocks. Reactivating the fearful memory was done by exposing the rats to those same cues and measuring their freezing response as a readout of fear. “We found that a single exposure to the gas, which is known to block NMDA receptors involved in memory formation in the brain, dramatically and persistently reduced fear responses for up to 2 weeks.  It was as though the animals no longer remembered to be afraid of those cues”, said Dr. Meloni.

Meloni points out that the inherent properties of a gas such as xenon make it especially attractive for targeting dynamic processes such as memory reconsolidation. “Unlike other drugs or medications that may also block NMDA receptors involved in memory, xenon gets in and out of the brain very quickly. This suggests that xenon could be given at the exact time the memory is reactivated, and for a limited amount of time, which may be key features for any potential therapy used in humans.”

“The fact that we were able to inhibit remembering of a traumatic memory with xenon is very promising because it is currently used in humans for other purposes, and thus it could be repurposed to treat PTSD,” added Kaufman.

For these investigators, several questions remain to be addressed with further testing. “From here we want to explore whether lower xenon doses or shorter exposure times would also block memory reconsolidation and the expression of fear. We’d also like to know if xenon is as effective at reducing traumatic memories from past events, so-called remote memories, versus the newly formed ones we tested in our study”.

Meloni and Kaufman indicate that future studies are planned to test if the effects of xenon in rats seen in their study translate to humans. Given that intrusive re-experiencing of traumatic memories – including flashbacks, nightmares, and distress and physiological reactions induced when confronted with trauma reminders – is a hallmark symptom for many who suffer from PTSD, a treatment that alleviates the impact of those painful memories could provide welcome relief.

Xenon gas protects the brain after head injury

Head injury is the leading cause of death and disability in people aged under 45 in developed countries, mostly resulting from falls and road accidents. The primary injury caused by the initial mechanical force is followed by a secondary injury which develops in the hours and days afterwards. This secondary injury is largely responsible for patients’ mental and physical disabilities, but there are currently no drug treatments that can be given after the accident to stop it from occurring.

Scientists at Imperial College London found that xenon, given within hours of the initial injury, limits brain damage and improves neurological outcomes in mice, both in the short term and long term. The findings, published in the journal Critical Care Medicine, could lead to clinical trials of xenon as a treatment for head injury in humans.

Although xenon is chemically inert, this does not mean it is biologically inactive. Xenon has been known to have general anaesthetic properties since the 1950s. Previous studies at Imperial have found that xenon can protect brain cells from mechanical injury in the lab, but this new study is the first time such an effect has been shown in live animals, a vital step before any new treatments can be tested in humans.

Mice were anaesthetised before having a controlled mechanical force applied to the brain. Some were then treated with xenon at different concentrations and at different times after injury.

Mice treated with xenon performed better in tests assessing their neurological deficits, such as movement and balance problems, in the days after injury and after one month. They also had less brain damage, even if treatment was delayed up to three hours after the injury.

Dr Robert Dickinson from the Department of Surgery and Cancer at Imperial College London, who led the study, said: “After a blow to the head, most of the damage to the brain doesn’t occur immediately but in the hours and days afterwards. At present we have no specific drugs to limit the spread of the secondary injury, but we think that is the key to successful treatment.

“This study shows that xenon can prevent brain damage and disability in mice, and crucially it’s effective when given up to at least three hours after the injury. It’s feasible that someone who hits their head in an accident could be treated in the hospital or in an ambulance in this timeframe.

“These findings provide crucial evidence to support doing clinical trials in humans.”