Five things we're bringing with us to #NAHBS

This year will be our first year as bonafide exhibitors at the National Handmade Bicycle Show, though we’ve been long-time fans and lurkers. 

We’ll be over at booth #406, along with a few things you’ll want to check out, including:

1. The all-new Cliffhanger: this is the show-stealer, and NAHBS is it’s natural environment. The original Cliffhanger, designed mostly as a mountain bike rim, gradually found it’s niche in the adventure-touring market — something we never saw coming. It saw countless countries and performed reliably, but was truthfully never designed as a touring rim.

The recent crop of adventure-touring bikes from companies like Salsa, Firefly, Jones, Surly, and many others got us thinking: what would a rim, specifically designed for adventure-touring applications, look like?

Enter the 2015 Cliffhanger. It’s wider, stronger, tubeless-ready (though works just as well with a tube) and rim brake or disc brake compatible. 

2. Knowledge: and we’d like to share it with you. Matt, our General Manager, will be presenting How Aluminum Rims Have Evolved in the Era of Carbon Fiber. The advances in both computer assisted design and engineering, along with advances in the aluminum extrusion process have allowed us to go a long way beyond the the basic box section rim of 20 years ago. Since we rolled our first rim, we’ve been using unconventional shapes to create stronger, higher performance rims, but now we’re able model and test our designs in ways never possible before, and the result is readily evident in models like the Blunt SS and Cliffhanger, among others. 

3. American Pride: we manufacture our rims in Jacksonville, Fla. and The Wheel Department builds our wheels in Grand Rapids, Mich. We use all US-made aluminum extrusion. Even our bottle cages and Veloplugs are made right in Grand Rapids. Heck, we don’t make our Velotape, but the guys that do are just down the road from us. You don’t have to look far to find capable, competent suppliers and manufacturers in the US.  Stop by the booth and see how we make our rims and build our wheels on our video display, or at your leisure on our Vimeo channel

4. Industry Nine hubs: speaking of American Pride, we’re excited to offer a premium US-made hub option to pair with our rims for 2015. Industry Nine has a long reputation as a leader in high-end bicycle hubs, and for 2015 we’ll be bringing in options for mountain, road and fat bikes. 

5. A photographer: we’re bringing our own Austin Russell to wander the show with his camera looking for the latest and greatest, and Velocity rim sightings in the wild. We’re also eager to see your pictures of our products, so we’ll be hosting an Instagram contest during the show giving you a chance to show off the Velocity products you spot along the way. Be on the lookout for this guy: 

Have you ever wondered how fast you are spinning around Earth’s rotational axis?  Probably not, but now you can find out anyway!  This graph shows the tangential speed of a point on Earth’s surface for a given latitude due to Earth’s rotational motion – it does not include speed due to our revolution around the sun! Tangential (linear) speed is the magnitude of the velocity vector, which points tangent to Earth’s surface in the same plane as the circle of latitude.

I’ve plotted the dependent variable (speed) on the x-axis; though this is unconventional, it allows the map in the background to be placed in the traditional north-pointing-up orientation.  So if you don’t know the latitude of your location, you can pick it out on the map and then trace a horizontal line to where it intersects with the curve. To the scientists and non-US readers, sorry that the speed axis is in mph; I converted from km/h because most of the people who read this are from the US.

Those who remember their trigonometry will notice that this graph is nothing more than a slight variation on the cosine function – because I have switched the axes, it could be thought of as cosine reflected over y=x, or arccos if it had no range restrictions and could plot below the x-axis.

Though this is an approximation, in an effort to be as accurate as possible, I used the length of a sidereal day (23 hrs, 56 min, 4 sec), which is a full 360° rotation of Earth. Because Earth is an oblate spheroid rather than a sphere, I varied the radius as a function of latitude when calculating the tangential speed. The polar radius is 3950 miles and the equatorial radius is 3963 miles; I approximated the radius at other latitudes via a linear interpolation. This has no visible effect on the curve, though. Using the average radius of the earth (3959 miles) as a constant changes the global tangential speeds by <1 mph. Topography of the Earth is equally unimportant for this level of accuracy because the difference between a mountain peak and the bottom of the ocean is trivial compared to the radius of the Earth. If, hypothetically, Mt. Everest’s peak (5.5 miles above datum) and the deepest part of the Mariana Trench (6.8 miles below datum) were both located along the equator, the difference in tangential speed caused by the 12.3 mile elevation difference would only be about 3 mph, or less than a third of a percent of the equator’s 1040 mph tangential speed.


"The high-speed photography reveals the detailed liquid-drop impact dynamics at various impact velocities. Such information allows us to construct a simple model for describing the morphology of raindrop imprints in a granular bed. Surprisingly, we found that liquid-drop impact cratering follows the same energy scaling and reproduces the same crater morphology as that of catastrophic asteroid impact cratering."

2014 APS/DFD Gallery of Fluid Motion Award Winner  (x)



Ten years ago, Ducati caused a flurry of interest in the custom world with its International Design Contest. The winner was an unknown young German designer called Jens vom Brauck, with a stunning concept called ‘Flat Red.’

Jens then built Flat Red for real, and the bike launched his company JvB-Moto onto the European custom scene. He’s now an established builder with a string of stark, brutal-looking machines to his name. A few days ago, at the Glemseck café racer festival in Germany, Jens revealed Flat Red II—and here it is. It’s based on a Ducati Monster 1100, and sports an aluminum tank with a carbon cover. The emphasis was on saving weight—the bike hits the scales at just 150 kg, but packs a cool 100 bhp, thanks to a custom exhaust and a Termignoni ECU.


It’s very slow, but i want one!