Math is Beautiful, math is the absolute truth and that makes it beautiful. Mathematicians even go so far as calling it an art form. 

mathematics, rightly viewed, possesses not only truth, but supreme beauty — a beauty cold and austere, like that of sculpture, without appeal to any part of our weaker nature, without the gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern perfection such as only the greatest art can show - Bertrand Russel 

One of the most amazing equations, in my opinion, is the Lorentz factor, 

Virtually all of the mathematics behind Einsteins theory or special relativity can be reduced back to this one, simple equation. basically, these few lines describe exactly what happens when you travel close to the speed of light, and the fact that it is as simple and short as it is, is beautiful.

The famous image of Einstein’s desk, exactly how he left it, mere hours after his death

Before his passing Einstein had refused the surgery for the internal bleeding that subsequently took his life; saying: “I want to go when I want. It is tasteless to prolong life artificially. I have done my share, it is time to go. I will do it elegantly”.

As can be seen here with the mountains of shuffled paper and scribbles on the blackboard, Einstein certainly did do his part and worked until the very end.



Gravity wells - 

A Gravity well or gravitational well is defined as “a conceptual model of the gravitational field surrounding a body in space.”

The more massive the body, the deeper and more extensive the gravity well associated with it. The Sun is very massive, relative to other bodies in the Solar System, so its gravity well appears “deep” and far-reaching.

(picture a very heavy object sinking deep into a bed mattress; the more mass the object has the deeper it sinks in and creates a deeper sinkhole; a deeper sink hole will pull in any nearby objects towards the centre object with greater influence. Objects of  mass bend the fabric of spacetime this way also as the theory of general relativity explains) 

a video example


Great visualization of gravity. I’m sure most of you have seen something like this before, it’s fairly common, but stick with it. At first the lecturer just covers the basics, but then he goes into more complex orbital systems.

I was just wondering how many hours of existence 36-year-old John has left, and it got me thinking. youve-got-your-love-online, who lives in a very different time zone from me, reminded me that it’s John’s birthday, and I was like, “wait, no, it’s tomorrow” because here it’s still Saturday. But John’s actual age has nothing to do with what time zone any of us live in now, including John. Your age doesn’t change as you change time zones, it’s completely dependent on what time it was (and where you lived) when you were born. Unless of course you’re travelling over time zones at light speed. 

Happy Birthday, Albert Einstein!

Born March 14, 1879, in Ulm, Germany, Albert Einstein (1879−1955) seems not to have anticipated how famous his theories and ideas would make him. And as you see from the quotation in the image above, Einstein professed to be mystified by the adulation and attention that rained down on him as his last name became, even during his lifetime, a byword for “genius.”

The truth is, however, that his life and work continue to intrigue. After all, as the Museum’s Einstein exhibition (on display in 2002−2003) points out, “Albert Einstein reinterpreted the inner workings of nature, the very essence of light, time, energy, and gravity. His insights fundamentally changed the way we look at the universe—and made him the most famous scientist of the 20th century.”

More on the man and his ideas.

                Galileo Coordinates and Law of Initeria

The Law of Initeria can be said to be “A body removed sufficiently far from other bodies continues in a state of rest or of uniform motion in a straight line” This law talks not only about the body that is in the reference state but as well as other objects that are ‘removed sufficiently far from other bodies’. This can be viewed as the Earth with stars that appear to be fixed since they are sufficiently far away. Over the time of a day the stars can trace out a circle around the Earth, a circle as we all know is not at rest or a linear trajectory. This breaks the law of initera in this reference frame.

Scientists studying cosmic microwave background (the faint afterglow of the Big Bang) have detected a signal generated a trillionth of a trillionth of a trillionth of a second after the Big Bang began.  They’ve found gravitational waves — ripples in the fabric of space-time.  Physicists are especially excited (and they’re trying their best to get their non-physicist friends excited too) because studying these waves could help bridge the divide between our understanding of gravity and quantum mechanics. You can hear more about it here.

Image credit: This is the telescope they used to detect the gravitational waves.  It’s called the South Pole Telescope, and it was photographed by Eli Duke.


The unexpected math behind Van Gogh’s “Starry Night” - Natalya St. Clair

Physicist Werner Heisenberg said, “When I meet God, I am going to ask him two questions: why relativity? And why turbulence? I really believe he will have an answer for the first.” As difficult as turbulence is to understand mathematically, we can use art to depict the way it looks. Natalya St. Clair illustrates how Van Gogh captured this deep mystery of movement, fluid and light in his work. 


Ask Ethan #74: Gravitational Waves

"Dear Ethan,
What the heck are gravity waves?

When you think of waves, chances are you think of some type of pressure wave moving through a medium, like sound or water waves, or you think of light, which is an electromagnetic wave that requires no medium to move through. But there’s another type of wave that exists, that no one expected before Einstein came along: gravitational waves. These are energy-carrying ripples through the fabric of space itself, explained in a beautiful analogy with light and detailing how they affect our Universe as well as how to detect them.