Some bday presents for my precious babby Zook, who is one of my closest friends and I love her lots and lots.

I WISH I’D HAD TIME TO DRAW YOU SOMETHING NICER! ;-; I love youuuuuuuuuu!!!!! I hope you had a wonderful birthday! ;w;

#eastvan #vancouver #bc #beautifulbc #britishcolumbia #canada #art #graffiti #vancouvergraff #vancouverstreetart #trains #freights #fr8heaven #leqs # #

Polyatomic (4/8)

A short series of PerfectWorld based drabbles.
Lysandre is left alone at home for a week, and he has plenty of time to think about things.
And do things.
}}Placed under a Read More for length and content{{

Rota's basis conjecture

a friend posed this to me last night and left me to stew on it for an hour before telling me it was an open problem:

Let $$B_1 = \{b_{1,1}, \cdots , b_{1,n}\}, \cdots B_n$$ be $$n$$ mutually disjoint bases for some finite-dimensional vector space $$V \simeq \bigoplus_{i \leq n} F^i$$ over a field $$F$$. Consider a matrix having each $$B_i$$ as its $$i^{\mathrm{th}}$$ row. Do there exist permutations on each of the rows so that the columns of the resulting matrix are also all bases of $$V$$, i.e. do there exist

$\sigma_1, \cdots \sigma_n \in S_n : \{\{b_{1,\sigma_1(i)}\}_{i \leq n}, \{b_{2, \sigma_2(i)}\}_{i \leq n}, \cdots , \{b_{n, \sigma_n (i)}\}_{i \leq n}\}$

so that the columns of this matrix are also all bases of $$V$$?

thoughts, anybody? the best i could get is iterating induction + pigonhole to get a sequence of nested $$n \times n, n-1 \times n-1, \cdots$$ matrices whose first columns were linearly independent.

Polyatomic (3.5/8)

A short series of PerfectWorld based drabbles.

Lysandre is left alone at home for a week, and he has plenty of time to think about things.
And do things.
}}Placed under a Read More for length and content{{

bagarang said:

Teu tumblr é mt foda, leq, tenho q me segurar p n sair dando rt em td hahaha

Nuss valeu vei KK,  pode ir se soltando e reblogando mais KKKK

Das Regal aus Salzgitter

Das Regal aus Salzgitter

Foto: F. Wehrmann

Die Amerikanerin Phillys Rose hat ein Buch über ein aberwitziges Abenteuer geschrieben: “The Shelf“, zu deutsch das Bücherregal.

Frau Rose, eine Vielleserin, hatte nach der Suche zu einem Buch eine Idee: Sie suchte sich willkürlich ein Regal aus der “New York Society Library” aus und las alle dort stehenden Bücher der Reihe nach durch – von den Signaturen LEQ bis…

View On WordPress